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Motivations

GR breaks down in the UV (high curvature regime)

!

: : Stelle (1977)...
Consider higher-curvature terms? ]

Constructing healthy theories implies

having second-order differential
equations

| ®

[ Einstein-dilaton-Gauss-Bonnet ]




EdGB: nuts and bolts

G = R?— AR R™ + Ry e RFVPO
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S = d*x =g [R — (Vp)* + Zn(qb) 9]

Dilatonic coupling n(¢) — Je V9

Low-energy truncation of string theory!©"°% & Sloan (197)]



EdGB: mass-radius diagram =

j dx =g [R — (V)2 + 2n<¢>91
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[Kanti+(1996), Torii+(1996), Torii & Maeda(1998), Guo+(2008), Rlpley & Pretorius(2020), Corelli+(2022, 2023)]



EdGB: black-hole interior structure

Excised region
. Singularity region [Alexeyev & Pomazanov (1996), Sotiriou & Zhou (2014)]

Elliptic region [Ripley & Pretorius (2019, 2020), East & Ripley (2021), Corelli+ (2022, 2023), Doneva+ (2023)...]
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Evidence that the Elliptic region can
become naked during evaporation
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Some approaches try to address the problem...

Linear coupling between the scalar field and the Ricci scalar  [Antoniou+(2021), Thaalba+(2023, 2024)]
S = . d*x \[—g 3’2——(Vc/))2 'BIR a G| o?
161 2

For some specific values of the constants/couplings, the naked elliptic region can be avoided in simulations...

...but the elliptic region is not eliminated entirely

Add regularising higher-order differential operators  [Figueras+(2024, 2025)] EFT approach



f(R) —DILATON-GAUSS-BONNET THEORY

Corelli, Pani, Sanna, arXiv:2510.17965 (PRD in press)



f(R) —dGB: the theory

S =

167’[

d*xy=g[ R

f(R)
— (V)* + 2n(¢) G

A DANGER




A DANGER

f(R) —dGB: the theory

1
S =1 | A" x V=g [f(R) = (V9)* + 2n(¢) G]

Reframe it as a scalar-tensor theory >» Identity the Ricci scalar as a new self-interacting scalar field x

[Sotiriou & Faraoni (2010), Jaime+(2011)] Two scalar fields involved

1
S =1 d*x =g [f' (DR - V(X)—(V¢)2+277(¢)9]

{ _______ V) =f"x—f&)




f(R) —dGB: the theory

A DANGER

1
§ = f 4% =g [f' GOR = V() — (V)2 + 2n(¢) G]

lf(R) = R + kR In(¢p) = 1e77?|

[K] — fz(n—l)

n = 2 «Quadratic Theory»
n =4 «Quartic Theory»




f(R) —dGB: mass-radius diagrams
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f(R) —dGB: mass-radius diagrams
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f(R) —dGB : why so similar to EdAGB?
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Curvature Invariants

f(R) —dGB : black-hole interior
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Curvature Invariants
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f(R) —dGB: singularity and elliptic regions
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Concluding remarks

[The inclusion of individual higher-curvature corrections in EAGB reveals qualitatively similar features ]
...and issues

An infinite tower of higher-curvature terms might be needed  [Bueno+ (2025)]

[m] i [m]

What could be done next? If you are brave enough...

* Description of the formation of these black holes

* Description of Hawking evaporation

[=]

Corelli, Pani, Sanna, arXiv:2510.17965

* Other numerical simulations (maybe?...)

* Analyze the loss of hyperbolicity in a gauge-invariant way [Reall (2021)]

&memmm/
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f(R) —dGB: static asymptotically-flat black holes (exterior)

Quadratic case
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EdGB: loss of hyperbolicity

Starting from initial regular data, does the evolution depend continously on the initial data?

The system of equations must be strongly hyperbolic

[Sarbach & Tiglio (2012), Hilditch (2013)]

Time-dependent case  [a(r),{(r), ¢p(r)] — [a(r,1),{(r,t), (1, 0)]

Q = 0,¢ Evolution equations
Auxiliary field variable + conjugate momentum 1 — +
~ 0pp — ¢Q 2 constraints for a & ¢
o OF 1 /
Principal symbol Py(ny) = 57 o7 v =(¢,0,P,a0)
U

[ Strong hyperbolicity Complete set of 17,/’s satisfying  det P(n ﬂ) = OJ




EdGB: loss of hyperbolicity

[ Strong hyperbolicity Complete set of n,,’s satisfying  det P(n u) = OJ

det P n 772 ’(1 (ﬁ)z + b (ﬂ) + C] =0 ne=20 Redundancy of the equation for d.¢
t'Ir =

Nr Nr Ny =0 2 constraints for @ and ¢

Real distinct solutions if A=b%2—4ac>0

Where A < 0, the system is elliptic —> Breakdown of predictability



f(R) —dGB: loss of hyperbolicity

Time-dependent case la(r), (1), p(r)] — [a(r,t),{(r,t), d(r,1)]

Q=0r¢
=7 Orp —<CQ Evolution equations
Auxiliary field variables + conjugate momenta 0=20 —> +
= OrX .
1 2 constraints for a & {
a
L OE 1 ;
Principal symbol ?11(77#) =52 7 v'=(¢,0,x,0,P,1],a,{)
U

det P « ni n? [a (%)4 +b(%)3 + c(%)z +b(ﬁ) + e] =0



f(R) —dGB: loss of hyperbolicity

det P « ni n? [a (%)4 +b(%)3 + c(%)z +b(%) + e] =0

Nng=20 Redundancy of the equation for d;¢ and d;
Ny =20 2 constraints for @ and ¢
A>0
Real distinct solutions if 64a3e — 16a%¢% + 16ab%c — 16a?bd —3* < 0

8ac—3b%2 <0
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