

FZU
ceico

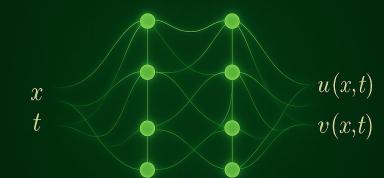
Czech Academy
of Sciences

GAČR
CZECH SCIENCE FOUNDATION

Teukolsky by Design: A Hybrid Spectral-PINN solver for Kerr Quasinormal Modes

Alexandre M. Pombo

SpectralPINN



Introduction: Quasinormal modes

- Gravitational wave detections are a window to explore compact objects
- These are ideal probes of fundamental and dark-sector physics
- Quasi-normal modes encode stability and the ringdown information
- The resulting GW carries information about the merging objects and the final remnant

Introduction: Quasinormal modes

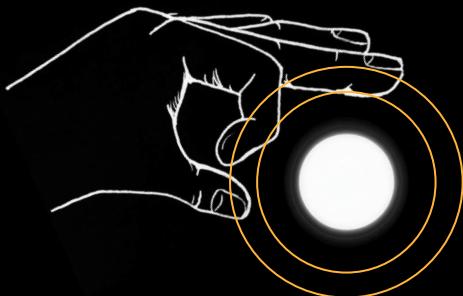
- Gravitational wave detections are a window to explore compact objects
- These are ideal probes of fundamental and dark-sector physics
- Quasi-normal modes encode stability and the ringdown information
- The resulting GW carries information about the merging objects and the final remnant

Introduction: Quasinormal modes

- Gravitational wave detections are a window to explore compact objects
- These are ideal probes of fundamental and dark-sector physics
- Quasi-normal modes encode stability and the ringdown information
- The resulting GW carries information about the merging objects and the final remnant

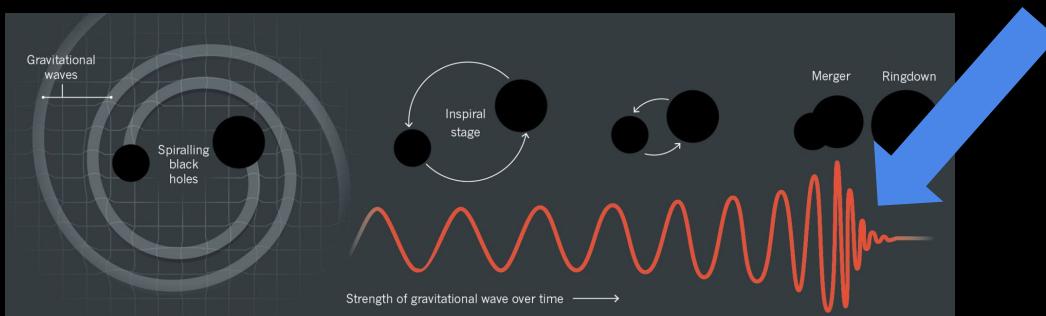
Introduction: Quasinormal modes

- Gravitational wave detections are a window to explore compact objects
- These are ideal probes of fundamental and dark-sector physics
- Quasi-normal modes encode stability and the ringdown information
- The resulting GW carries information about the merging objects and the final remnant



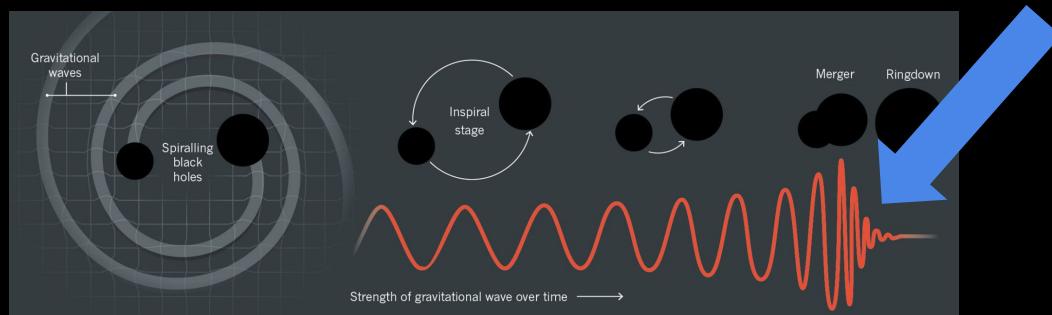
Introduction: Quasinormal modes

- Gravitational wave detections are a window to explore compact objects
- These are ideal probes of fundamental and dark-sector physics
- Quasi-normal modes encode stability and the ringdown information
- The resulting GW carries information about the merging objects and the final remnant



Introduction: Quasinormal modes

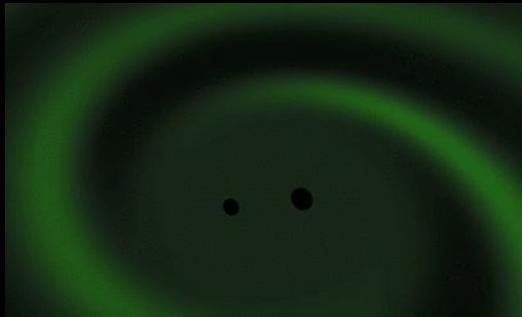
- Gravitational wave detections are a window to explore compact objects
- These are ideal probes of fundamental and dark-sector physics
- Quasi-normal modes encode stability and the ringdown information
- The resulting GW carries information about the merging objects and the final remnant



- QNM computation is challenging, leaving many models unexplored.

Kerr BH: Teukolsky equation

$$\begin{aligned} & \left[\frac{(r^2 + a^2)^2}{\Delta} - a^2 \sin^2 \theta \right] \frac{\partial^2 \psi}{\partial t^2} + \frac{4Mar}{\Delta} \frac{\partial^2 \psi}{\partial t \partial \varphi} + \left[\frac{a^2}{\Delta} - \frac{1}{\sin^2 \theta} \right] \frac{\partial^2 \psi}{\partial \varphi^2} \\ & - \Delta^{-s} \frac{\partial}{\partial r} \left(\Delta^{s+1} \frac{\partial \psi}{\partial r} \right) - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) - 2s \left[\frac{a(r - M)}{\Delta} + \frac{i \cos \theta}{\sin^2 \theta} \right] \frac{\partial \psi}{\partial \varphi} \\ & - 2s \left[\frac{M(r^2 - a^2)}{\Delta} - r - ia \cos \theta \right] \frac{\partial \psi}{\partial t} + (s^2 \cot^2 \theta - s) \psi = 0, \end{aligned}$$



Kerr BH: Teukolsky equation

$$\begin{aligned} & \left[\frac{(r^2 + a^2)^2}{\Delta} - a^2 \sin^2 \theta \right] \frac{\partial^2 \psi}{\partial t^2} + \frac{4Mar}{\Delta} \frac{\partial^2 \psi}{\partial t \partial \varphi} + \left[\frac{a^2}{\Delta} - \frac{1}{\sin^2 \theta} \right] \frac{\partial^2 \psi}{\partial \varphi^2} \\ & - \Delta^{-s} \frac{\partial}{\partial r} \left(\Delta^{s+1} \frac{\partial \psi}{\partial r} \right) - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) - 2s \left[\frac{a(r - M)}{\Delta} + \frac{i \cos \theta}{\sin^2 \theta} \right] \frac{\partial \psi}{\partial \varphi} \\ & - 2s \left[\frac{M(r^2 - a^2)}{\Delta} - r - ia \cos \theta \right] \frac{\partial \psi}{\partial t} + (s^2 \cot^2 \theta - s) \psi = 0, \end{aligned}$$

$$\psi(r, y) = \boxed{e^{i(m\varphi - \omega t)}} e^{\omega(ay + ir)} (1 + y)^{\frac{|m-s|}{2}} (1 - y)^{\frac{|m+s|}{2}} (r - r_-)^{\sigma_-} (r - r_+)^{\sigma_+} p(x, y)$$

Kerr BH: Teukolsky equation

$$\begin{aligned} & \left[\frac{(r^2 + a^2)^2}{\Delta} - a^2 \sin^2 \theta \right] \frac{\partial^2 \psi}{\partial t^2} + \frac{4Mar}{\Delta} \frac{\partial^2 \psi}{\partial t \partial \varphi} + \left[\frac{a^2}{\Delta} - \frac{1}{\sin^2 \theta} \right] \frac{\partial^2 \psi}{\partial \varphi^2} \\ & - \Delta^{-s} \frac{\partial}{\partial r} \left(\Delta^{s+1} \frac{\partial \psi}{\partial r} \right) - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) - 2s \left[\frac{a(r - M)}{\Delta} + \frac{i \cos \theta}{\sin^2 \theta} \right] \frac{\partial \psi}{\partial \varphi} \\ & - 2s \left[\frac{M(r^2 - a^2)}{\Delta} - r - ia \cos \theta \right] \frac{\partial \psi}{\partial t} + (s^2 \cot^2 \theta - s) \psi = 0, \end{aligned}$$

$$\psi(r, y) = e^{i(m\varphi - \omega t)} e^{\omega(ay + ir)} (1 + y)^{\frac{|m-s|}{2}} (1 - y)^{\frac{|m+s|}{2}} (r - r_-)^{\sigma_-} (r - r_+)^{\sigma_+} p(x, y)$$

Kerr BH: Teukolsky equation

$$\begin{aligned}
& \left[\frac{(r^2 + a^2)^2}{\Delta} - a^2 \sin^2 \theta \right] \frac{\partial^2 \psi}{\partial t^2} + \frac{4Mar}{\Delta} \frac{\partial^2 \psi}{\partial t \partial \varphi} + \left[\frac{a^2}{\Delta} - \frac{1}{\sin^2 \theta} \right] \frac{\partial^2 \psi}{\partial \varphi^2} \\
& - \Delta^{-s} \frac{\partial}{\partial r} \left(\Delta^{s+1} \frac{\partial \psi}{\partial r} \right) - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) - 2s \left[\frac{a(r - M)}{\Delta} + \frac{i \cos \theta}{\sin^2 \theta} \right] \frac{\partial \psi}{\partial \varphi} \\
& - 2s \left[\frac{M(r^2 - a^2)}{\Delta} - r - ia \cos \theta \right] \frac{\partial \psi}{\partial t} + (s^2 \cot^2 \theta - s) \psi = 0 ,
\end{aligned}$$

$$\psi(r, y) = e^{i(m\varphi - \omega t)} e^{\omega(ay + ir)} (1 + y)^{\frac{|m-s|}{2}} (1 - y)^{\frac{|m+s|}{2}} (r - r_-)^{\sigma_-} (r - r_+)^{\sigma_+} p(x, y)$$

Kerr BH: Teukolsky equation

$$\begin{aligned}
& \left[\frac{(r^2 + a^2)^2}{\Delta} - a^2 \sin^2 \theta \right] \frac{\partial^2 \psi}{\partial t^2} + \frac{4Mar}{\Delta} \frac{\partial^2 \psi}{\partial t \partial \varphi} + \left[\frac{a^2}{\Delta} - \frac{1}{\sin^2 \theta} \right] \frac{\partial^2 \psi}{\partial \varphi^2} \\
& - \Delta^{-s} \frac{\partial}{\partial r} \left(\Delta^{s+1} \frac{\partial \psi}{\partial r} \right) - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) - 2s \left[\frac{a(r - M)}{\Delta} + \frac{i \cos \theta}{\sin^2 \theta} \right] \frac{\partial \psi}{\partial \varphi} \\
& - 2s \left[\frac{M(r^2 - a^2)}{\Delta} - r - ia \cos \theta \right] \frac{\partial \psi}{\partial t} + (s^2 \cot^2 \theta - s) \psi = 0 ,
\end{aligned}$$

$$\psi(r, y) = e^{i(m\varphi - \omega t)} e^{\omega(ay + ir)} (1 + y)^{\frac{|m-s|}{2}} (1 - y)^{\frac{|m+s|}{2}} (r - r_-)^{\sigma_-} (r - r_+)^{\sigma_+} p(x, y)$$

$$p(x, y) = f(x)g(y)$$

Normalization conditions

- The Teukolsky QNM are a homogeneous linear eigenvalue problem
- QNM amplitudes are fixed by the initial data rather
- Once (ω, Λ) is fixed the equations admit: $(f, g) \rightarrow (C f, C^{-1} g)$ \square $p \rightarrow C p$
- Following Leaver's original construction

Normalization conditions

- The Teukolsky QNM are a homogeneous linear eigenvalue problem
- QNM amplitudes are fixed by the initial data rather
- Once (ω, Λ) is fixed the equations admit: $(f, g) \rightarrow (C f, C^{-1} g)$ \square $p \rightarrow C p$
- Following Leaver's original construction

Normalization conditions

- The Teukolsky QNM are a homogeneous linear eigenvalue problem
- QNM amplitudes are fixed by the initial data rather
- Once (ω, Λ) is fixed the equations admit: $(f, g) \rightarrow (C f, C^{-1} g)$ \square $p \rightarrow C p$
- Following Leaver's original construction

$$f(1) = 1, \quad g(-1) = 1 \quad \vee \quad p(1, -1) = 1$$

Normalization conditions

- The Teukolsky QNM are a homogeneous linear eigenvalue problem
- QNM amplitudes are fixed by the initial data rather
- Once (ω, Λ) is fixed the equations admit: $(f, g) \rightarrow (C f, C^{-1} g)$ \square $p \rightarrow C p$
- Following Leaver's original construction

$$f(1) = 1, \quad g(-1) = 1 \quad \vee \quad p(1, -1) = 1$$

Soft Normalization

Hard Normalization

Normalization conditions

- The Teukolsky QNM are a homogeneous linear eigenvalue problem
- QNM amplitudes are fixed by the initial data rather
- Once (ω, Λ) is fixed the equations admit: $(f, g) \rightarrow (C f, C^{-1} g)$ \square $p \rightarrow C p$
- Following Leaver's original construction

$$f(1) = 1, \quad g(-1) = 1 \quad \vee \quad p(1, -1) = 1$$

Soft Normalization

Hard Normalization

$$\mathcal{L} = \mathcal{L}_{\text{bulk}} + \beta \mathcal{L}_{\text{NC}}$$

Normalization conditions

- The Teukolsky QNM are a homogeneous linear eigenvalue problem
- QNM amplitudes are fixed by the initial data rather
- Once (ω, Λ) is fixed the equations admit: $(f, g) \rightarrow (C f, C^{-1} g)$ \square $p \rightarrow C p$
- Following Leaver's original construction

$$f(1) = 1, \quad g(-1) = 1 \quad \vee \quad p(1, -1) = 1$$

Soft Normalization

$$\mathcal{L} = \mathcal{L}_{\text{bulk}} + \beta \mathcal{L}_{\text{NC}}$$

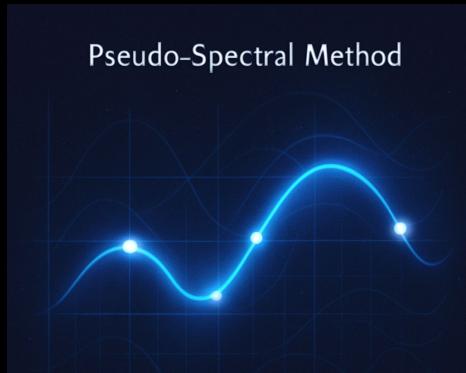
Hard Normalization

$$\begin{aligned} f(x) &= (e^{x-1} - 1) \mathcal{F}(x) + 1 \\ g(y) &= (e^{y+1} - 1) \mathcal{G}(y) + 1 \end{aligned}$$

$$p(x, y) = 1 + [\mathcal{P}(x, y) - \mathcal{P}(1, -1)]$$

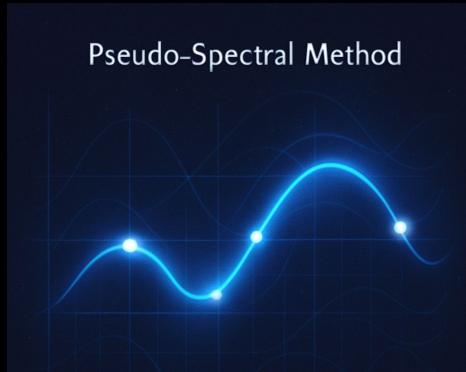
Pseudo-Spectral Method

$$p(x,y) = \sum A_{i,j} T_i(x) T_j(y)$$

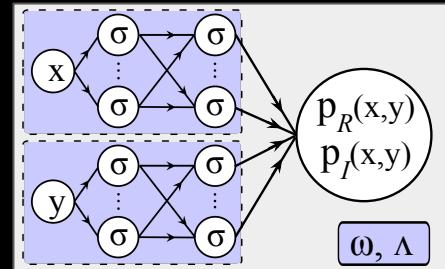


Pseudo-Spectral Method

$$p(x,y) = \sum A_{i,j} T_i(x) T_j(y)$$



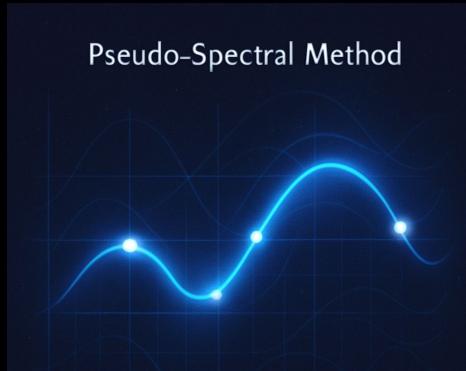
Physics Informed Neural Networks



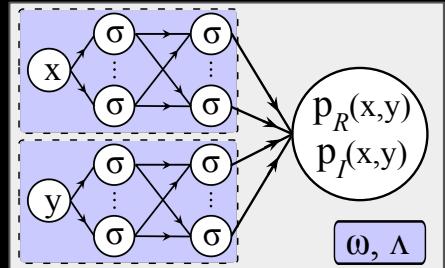
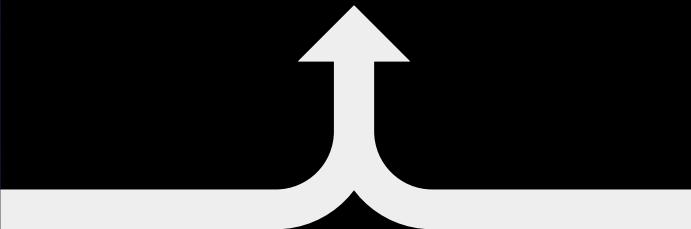
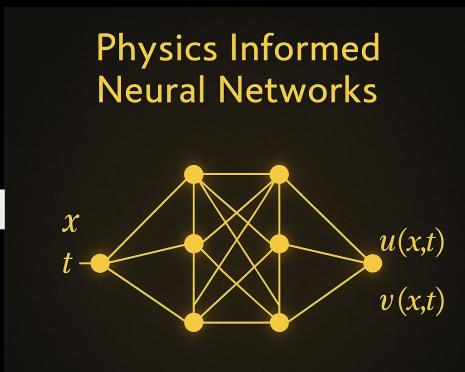
Physics Informed Neural Networks

Pseudo-Spectral Method

$$p(x,y) = \sum A_{i,j} T_i(x) T_j(y)$$

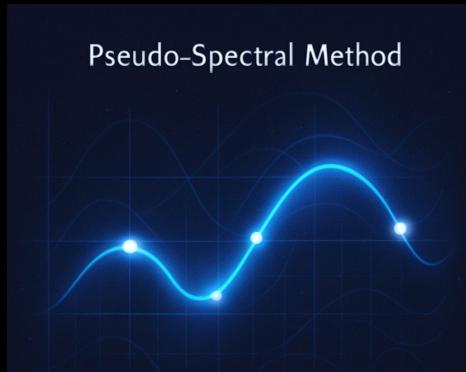
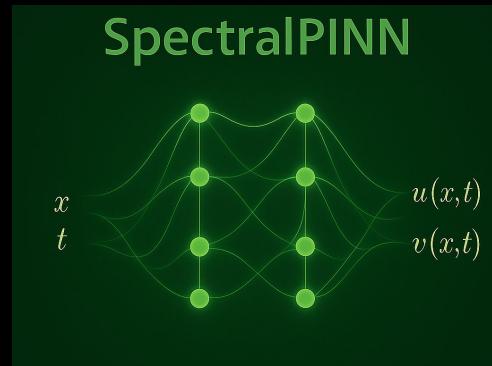


Physics Informed Neural Networks

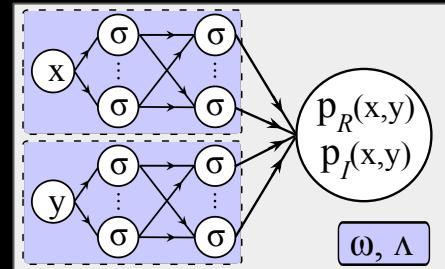
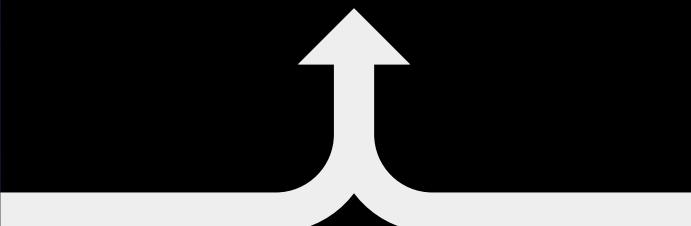
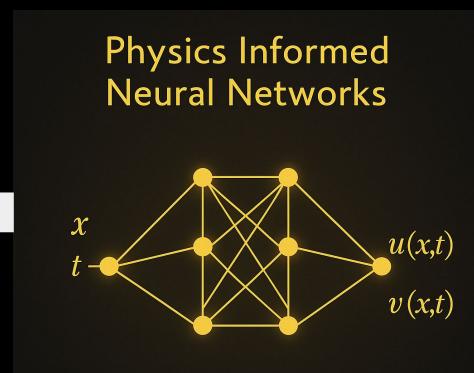


Pseudo-Spectral Method

$$p(x,y) = \sum A_{i,j} T_i(x) T_j(y)$$



Physics Informed Neural Networks

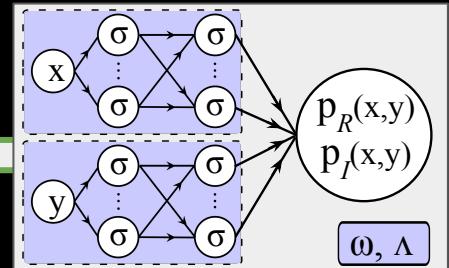


SpectralPINN

Pseudo-Spectral Method

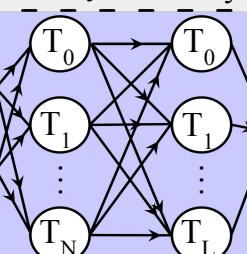
$$p(x,y) = \sum A_{i,j} T_i(x) T_j(y)$$

Physics Informed Neural Networks



SpectralPINN

Cheby. Cheby.



Physics Constraints

Normalization conditions

$$p(x=1, y=-1)$$

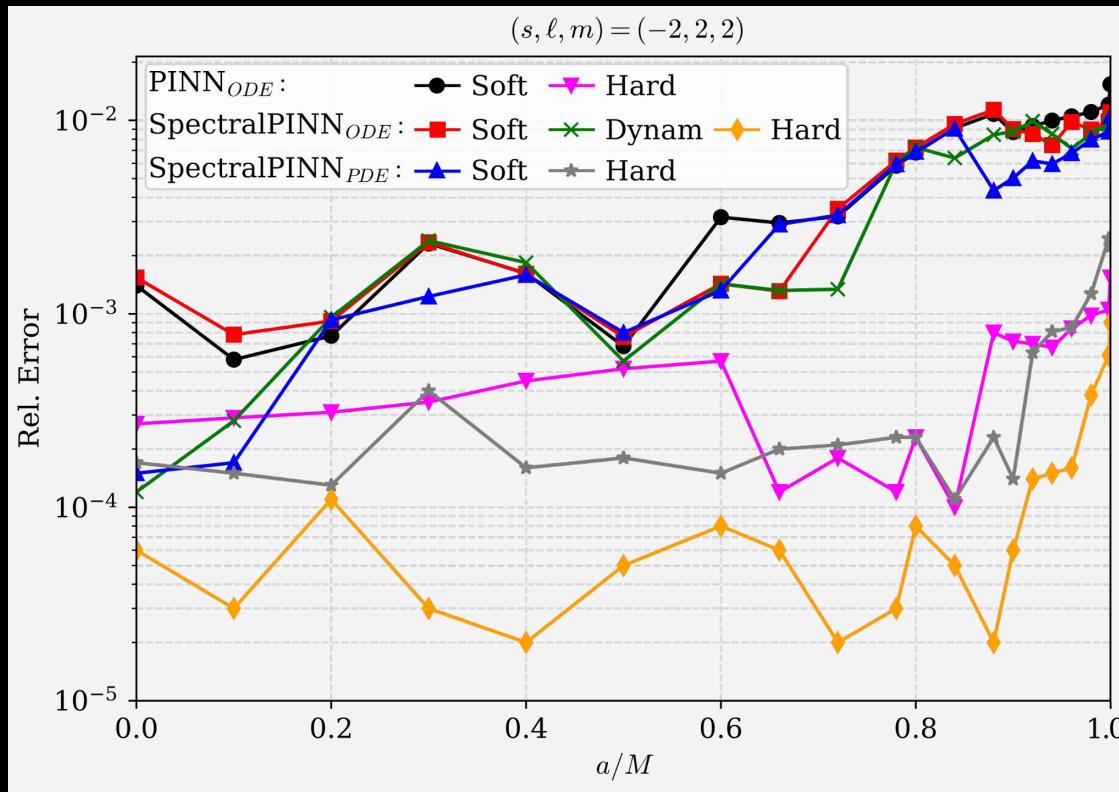
Field equations

$$\begin{aligned} P_0 p + P_x \partial_x p + P_{xx} \partial_{xx} p \\ + P_y \partial_y p + P_{yy} \partial_{yy} p \end{aligned}$$

$$\mathcal{L}$$

Results

Results: Numerical accuracy



Results: Quadrupolar deviation

- The SpectralPINN formulation is able to solve the 2D PDE
- Perturbations of Kerr that spoil the separability of Teukolsky equation
- As a “toy”, we add a quadrupole deformation to the Teukolsky operator

Results: Quadrupolar deviation

- The SpectralPINN formulation is able to solve the 2D PDE
- Perturbations of Kerr that spoil the separability of Teukolsky equation
- As a “toy”, we add a quadrupole deformation to the Teukolsky operator

Results: Quadrupolar deviation

- The SpectralPINN formulation is able to solve the 2D PDE
- Perturbations of Kerr that spoil the separability of Teukolsky equation
- As a “toy”, we add a quadrupole deformation to the Teukolsky operator

$$\mathcal{L}_\varepsilon = \mathcal{L}_{\text{Teuk}} + \varepsilon V(x, y) p(x, y)$$

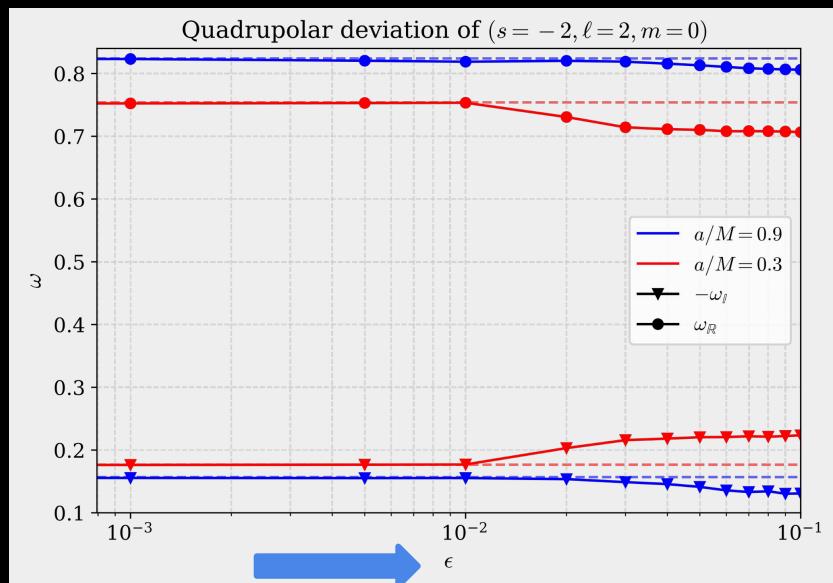
$$V(x, y) = x^3 P_2(y)$$

Results: Quadrupolar deviation

- The SpectralPINN formulation is able to solve the 2D PDE
- Perturbations of Kerr that spoil the separability of Teukolsky equation
- As a “toy”, we add a quadrupole deformation to the Teukolsky operator

$$\mathcal{L}_\varepsilon = \mathcal{L}_{\text{Teuk}} + \boxed{\varepsilon} V(x, y) p(x, y)$$

$$V(x, y) = x^3 P_2(y)$$

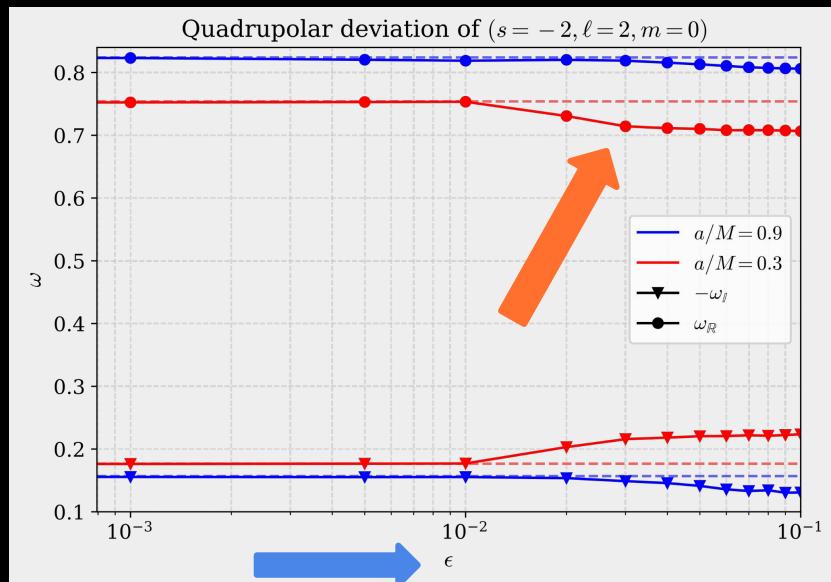


Results: Quadrupolar deviation

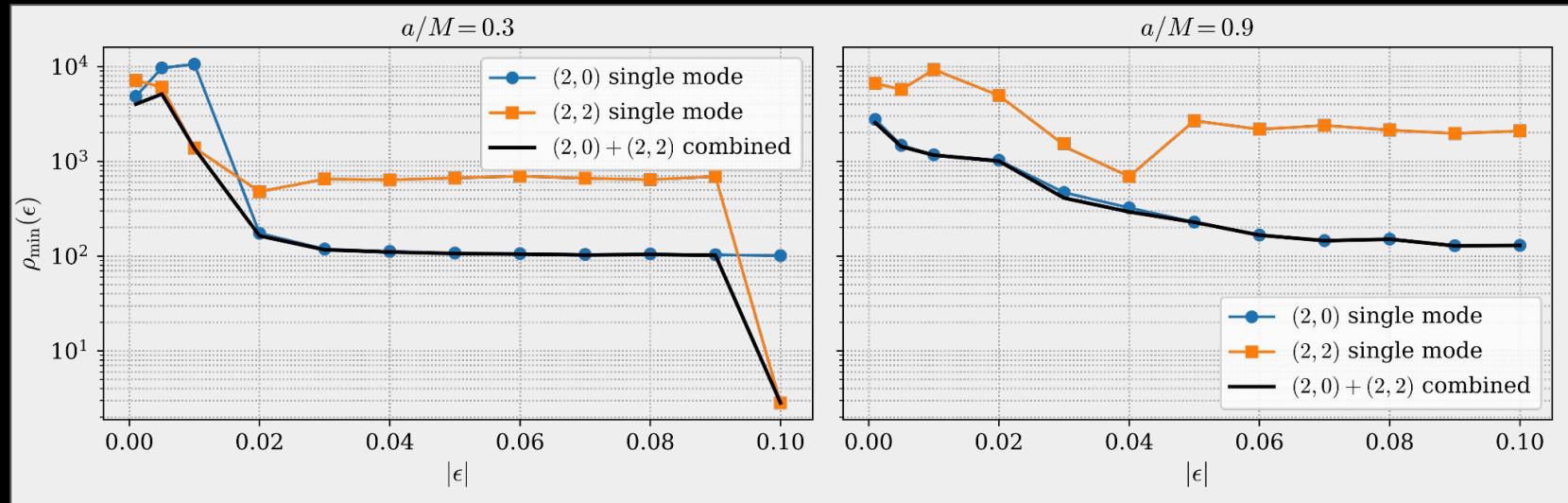
- The SpectralPINN formulation is able to solve the 2D PDE
- Perturbations of Kerr that spoil the separability of Teukolsky equation
- As a “toy”, we add a quadrupole deformation to the Teukolsky operator

$$\mathcal{L}_\varepsilon = \mathcal{L}_{\text{Teuk}} + \boxed{\varepsilon} V(x, y) p(x, y)$$

$$V(x, y) = x^3 P_2(y)$$



Results: Einstein Telescope



Conclusion

Conclusion

Quasi-Normal
Modes

SpectralPINN

Recent and
near future
observations

Obrigado !

Thanks !

FZU
ceico

Czech Academy
of Sciences

GAČR
CZECH SCIENCE FOUNDATION

Teukolsky by Design: A Hybrid Spectral-PINN solver for Kerr Quasinormal Modes

Thank you!

2511.15796

pombo@fzu.cz

FZU
ceico

Czech Academy
of Sciences

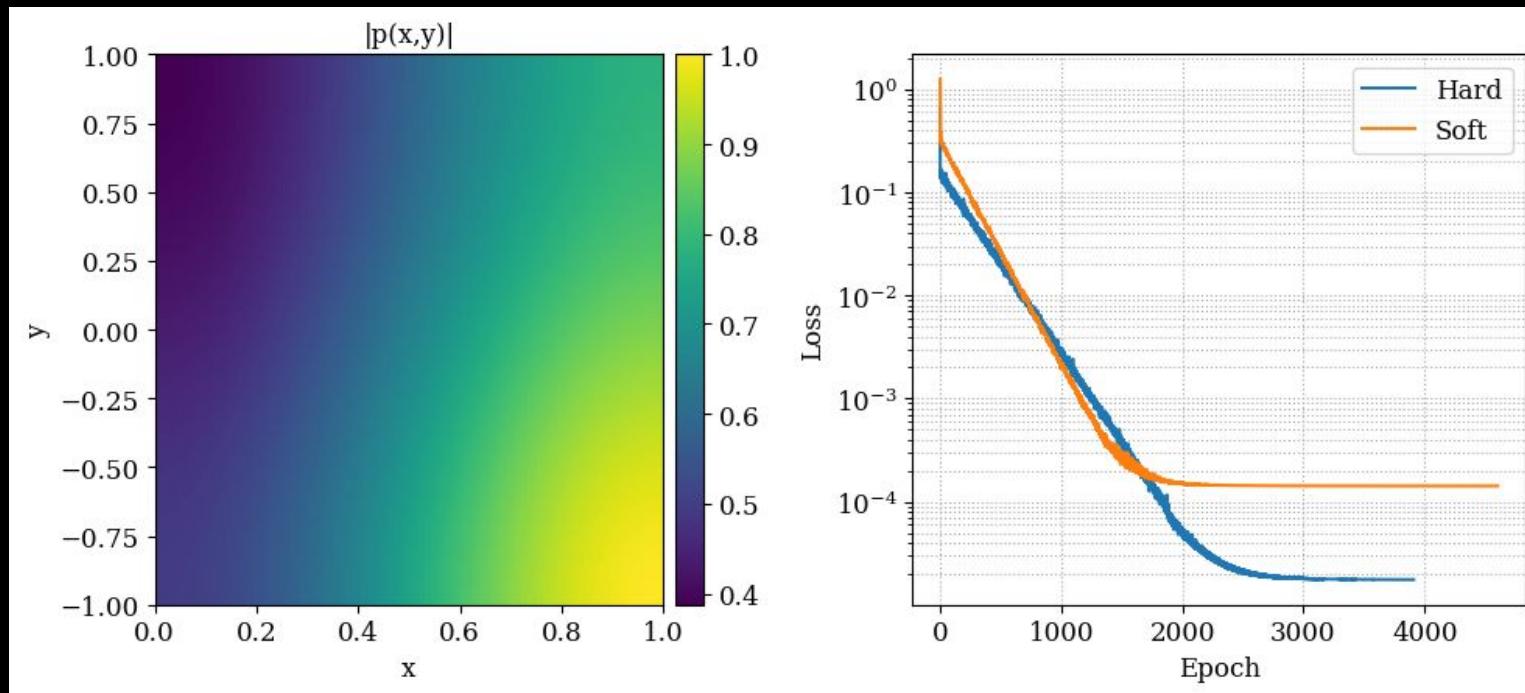
GAČR
CZECH SCIENCE FOUNDATION

Teukolsky by Design: A Hybrid Spectral-PINN solver for Kerr Quasinormal Modes

2511.15796

pombo@fzu.cz

Extra quirks: Training



Extra quirks: Basis number

Eq. type	$N \times L$						
	10×10	15×10	10×15	15×15	20×20	30×30	50×50
ODE	0.714	0.109	0.156	0.012	0.006	0.002	0.429
PDE	0.920	0.234	0.280	0.071	0.052	0.011	0.600

Extra quirks: Training improvements

Scheme	Eq. type	Base	+ \mathbb{C} -dtype	+HAdamD	+Alt. Sched.
PINN	ODE	0.138	0.113	0.069	0.050
SpectralPINN	ODE	0.131	0.126	0.016	0.002
SpectralPINN	PDE	0.142	0.134	0.058	0.011