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● Gravitational wave detections are a window to explore compact objects

● These are ideal probes of fundamental and dark-sector physics

● Quasi-normal modes encode stability and the ringdown information 

● The resulting GW carries information about the merging objects and the 
final remnant
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● Gravitational wave detections are a window to explore compact objects

● These are ideal probes of fundamental and dark-sector physics

● Quasi-normal modes encode stability and the ringdown information 

● The resulting GW carries information about the merging objects and the 
final remnant

● QNM computation is challenging, leaving many models unexplored. 
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● The Teukolsky QNM are a homogeneous linear eigenvalue problem

● QNM amplitudes are fixed by the initial data rather

● Once (ω, Λ) is fixed the equations admit: (f, g) → (C f, C-1 g)   ⴷ   p → C p

● Following Leaver’s original construction
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● The SpectralPINN formulation is able to solve the 2D PDE

● Perturbations of Kerr that spoil the separability of Teukolsky equation

● As a “toy”, we add a quadrupole deformation to the Teukolsky operator
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