Teukolsky by Design: A Hybrid
Spectral-PINN solver for Kerr
Quasinormal Modes

SpectralPINN
Alexandre M. Pombo



https://docs.google.com/presentation/d/1LgEneHXxCcHcTFR2Hrs2sIq7yaIkS-awvHEPuUGhh5Q/edit?usp=sharing

Introduction: Quasinormal modes

e Gravitational wave detections are a window to explore compact objects



Introduction: Quasinormal modes

e Gravitational wave detections are a window to explore compact objects

e These are ideal probes of fundamental and dark-sector physics



Introduction: Quasinormal modes

o (Gravitational wave detections are a window to explore compact objects
e These are ideal probes of fundamental and dark-sector physics

e Quasi-normal modes encode stability and the ringdown information



Introduction: Quasinormal modes

o (Gravitational wave detections are a window to explore compact objects
e These are ideal probes of fundamental and dark-sector physics

e Quasi-normal modes encode stability and the ringdown information




Introduction: Quasinormal modes

o (Gravitational wave detections are a window to explore compact objects
e These are ideal probes of fundamental and dark-sector physics
e (Quasi-normal modes encode stability and the ringdown information

e The resulting GW carries information about the merging objects and the
final remnant




Introduction: Quasinormal modes

o Gravitational wave detections are a window to explore compact objects
e These are ideal probes of fundamental and dark-sector physics
e Quasi-normal modes encode stability and the ringdown information

e The resulting GW carries information about the merging objects and the
final remnant

e QNM computation is challenging, leaving many models unexplored.



Kerr BH: Teukolsky equation
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Kerr BH: Teukolsky equation
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Normalization conditions

e The Teukolsky QNM are a homogeneous linear eigenvalue problem
e QNM amplitudes are fixed by the initial data rather
e Once (o, A) is fixed the equations admit: (f,g) — (Cf,C'g) O p—Cp
e Following Leaver’s original construction
F)=1, g-1)=1 v  p(1,-1)=1
Soft Normalization Hard Normalization

flz) = ("t —1)F(z) + 1
L= Lyux + BL
bl e 9(y) = (e — 1)g(y) + 1

p(z,y) =1+ [P(z,y) — P(1,—1)]
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SpectralPINN
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SpectralPINN

Pseudo-Spectral Physics Informed
Method Neural Networks
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Results: Numerical accuracy
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Results: Einstein Telescope

—e— (2,0) single mode
(2,2) single mode
(2,0)+(2,2) combined
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Extra quirks: Training

1000 2000 3000 4000
Epoch




Extra quirks: Basis number

N x L

Eq. type | 10 x 10 15x 10 10x 15 15x15 20x20 30 x30 50 x50

ODE 0.714 0.109 0.156 0.012 0.006 0.002 0.429
PDE 0.920 0.234 0.280 0.071 0.052 0.011 0.600




Extra quirks: Training improvements

Scheme Eq. type | Base +C-dtype -+HAdamD -+Alt. Sched.

PINN ODE 0.138 0.113 0.069 0.050
Spectral PINN ODE 0.131 0.126 0.016 0.002
Spectral PINN PDE 0.142 0.134 0.058 0.011




