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REGULAR BLACK HOLES?

⋆ a strategy: regular BH metric gab → Gab = 8πTab

however … is Tab realistic?

⋆ numerous concerns:

what fields?

weak field limits?

energy conditions?

are singular branches absent?
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REGULAR BHS WITH NLE

⋆ E. Ayón-Beato and E. García
PLB 493 (2000) 149–152

L (FabF
ab) = λ2

( √
FabF ab

√
2+ λ1

√
FabF ab

)5
2

⋆ NonLinear Electromagnetism

⋆ proliferation of NLE theories 2000–2025
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BASIC ELEMENTS OF NLE

⋆ two EM invariants: F := FabF
ab G := Fab ⋆F

ab

⋆ Maxwell’s Lagrangian L (F) = −F/4

⋆ more general family of NLE Lag’s L (F,G)

⋆ Maxwellian weak field (MWF) limit if

LF(F,G) = −1/4+O(H), LG(F,G) = O(H)

as H → 0, where H :=
√
F2 + G2
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gNLE

nonminimal

minimal

higher derivative

L (F,G)

irregular

qMWF

dMWF

MWF
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RECENT RESULTS
FOR STATIC, SPHERICALLY SYMMETRIC SPACETIMES

⋆ A. Bokulić, I.S. and T. Jurić,
PRD 106 (2022) 064020 [arXiv: 2206.07064]

Inconsistency of Lag.’s MWF limit
with bounded RabcdR

abcd as r → 0+

⋆ A. Bokulić, I.S. and T. Jurić, [arXiv: 2510.23711]

Necessity of black hole mass–charge constraint
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WEAK FIELD LIMIT CONSTRAINTS
ARXIV: 2206.07064 | PRD 106 (2022) 064020

⋆ Key ideas:

→ inequalities R2 ≤ 4RabR
ab ≤ 6RabcdR

abcd

Eur. Phys. J. C, 85 (2025) 818 [arXiv: 2502.12242]
in collaboration with Jan Dragašević and Ina Moslavac

→ bounding via field equations
R, RabR

ab ↔ gabTab, TabT
ab ↔ LFF, LFG

→ investigate details of the generalized Maxwell’s equations
LFE(r)− LGB(r) = −Q/(4r2) and B(r) = P/r2
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WEAK FIELD LIMIT CONSTRAINTS
ARXIV: 2206.07064 | PRD 106 (2022) 064020

L (F,G) qMWF Q ̸= 0, P = 0
L (F) Q ̸= 0 ̸= P

−F/4+ h(G) P ̸= 0
−F/4+ aFrGs MWF Q ̸= 0 ̸= P

−F/4+ aF2 + bFG+ cG2 MWF P ̸= 0
(b, c) ̸= (0, 0) if Q = 0
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MASS–CHARGE CONSTRAINTS
ARXIV: 2510.23711

⋆ magnetically charged case: −gtt = f(r) = 1/grr ,(
r(f(r)− 1)

)′
= 2r2L (2P 2/r4, 0)

→ integrate over [r,∞⟩, conveniently reorganize

f(r;M,P )− 1
r2

=
−2M + |P |

3
2h(P/r2)

r3

→ regularity of the center ⇒ well-defined

I := lim
r→0+

h(P/r2) = −2−
1
4

∫ ∞

0
L (u, 0)u−

7
4 du.

⋆ limit r → 0+ implies M = (I/2)|P |
3
2
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OPEN QUESTIONS

⋆ Which nonminimally coupled EM theories admit
regular black holes?

⋆ Which higher derivative EM theories admit regular
black holes?

⋆ What about rotating regular black holes?

13



Intro No-go

OPEN QUESTIONS

⋆ Which nonminimally coupled EM theories admit
regular black holes?

⋆ Which higher derivative EM theories admit regular
black holes?

⋆ What about rotating regular black holes?

13



Intro No-go

OPEN QUESTIONS

⋆ Which nonminimally coupled EM theories admit
regular black holes?

⋆ Which higher derivative EM theories admit regular
black holes?

⋆ What about rotating regular black holes?

13



Intro No-go

OPEN QUESTIONS

⋆ Which nonminimally coupled EM theories admit
regular black holes?

⋆ Which higher derivative EM theories admit regular
black holes?

⋆ What about rotating regular black holes?

13



Intro No-go

Thank you for the attention!

This research has been supported by the
Croatian Science Foundation

under the projects
IP-2020-02-9614 & IP-2025-02-8625

14


	Introduction
	Constraints and loopholes

