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Quick Motivation
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Figure 1: Credit: Phys. Rev. Lett.
116, 061102 (2016).
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Perturbations in the Kerr Background

Linear gravitational perturbations of the Kerr metric are described by
the Teukolsky equation. The radial equation can be written in the
form

d2
dr,

Y+ [w+ V()] Y =0

Where Vy is a long ranged potential: Vy ~ 1/r.
Difficult for numerical integration of the equation.
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Perturbations in the Kerr Background

Linear gravitational perturbations of the Kerr metric are described by
the Teukolsky equation. The radial equation can be written in the
form

d2
dr.

Y+ [w+ V()] Y =0

Where Vy is a long ranged potential: Vy ~ 1/r.
Difficult for numerical integration of the equation.

The Generalized Sasaki-Nakamura transformation (GSN)
converts the long-range potential behavior of the Teukolsky equation
into a short-ranged one.

d? d
W - sffmw(r)% - suémw(r) s Xtmw (T) =0

*

Here U — 1/7?
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Direct Integration of the GSN Equation

Quasinormal modes are defined by imposing outgoing boundary
conditions at infinity and ingoing boundary conditions at the outer
horizon:

X 672'(0.)7777,911)7‘*7 ry — —00
etiwre re = 400

Since QNM frequencies w are complex, these solutions grow or decay
exponentially in the asymptotic regions, making direct numerical
integration unstable.
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Complex Scaling Transform

To control the exponential behavior, we deform the integration
contour into the complex r, plane:

=1 4 pet? . peR.

5/8



Complex Scaling Transform

To control the exponential behavior, we deform the integration
contour into the complex r, plane:

=1 4 pet? . peR.

Im r,

Figure 2: Complex deformation of
the 7. contour.
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Complex Scaling Transform

To control the exponential behavior, we deform the integration

contour into the complex r, plane:
re= 1 4 e,
Under this transformation, the
asymptotic behavior becomes
eiwr* — eiwpew
which is purely oscillatory if

Im(e’w) =0 = pB=-argw.

This choice removes exponential
growth and allows for stable numerical
integration.
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Figure 2: Complex deformation of
the r. contour.
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Complex Scaling Transform

After the contour deformation r, = pe?®, the GSN equation becomes

d? o d .

— —ePF— - 62“31/{} X =0.

dp dp

— Complex scaling rotates
exponential growth into
oscillatory behavior.

— The equation is integrated
from both boundaries
toward a matching point.
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— QNMs are found by shooting 50
for frequencies where the two BT 0 E W m

solutions match.
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Calculated Quasinormal Modes
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Conclusion

— We have developed a new method —

to calculate quasinormal modes of
Kerr black holes based on the : :=' :: :='
Generalized Sasaki—Nakamura

formalism.

* Very stable, and works for large .
black hole spin and angular a
number £.

* Fast, with very high numerical
precision.

@l
— The code is publicly available on c of "“Zan o S22 "R .
GitHub.
* Works for scalar, vector and

gravitational perturbations. S C A N M E
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