

Radio Orbiting a Black Hole

Masters Thesis in Applied Mathematics
Supervisors: Prof. Vitor Cardoso, Prof. José Natário

Overview

- Motivation
- Theoretical model
- Computational methodology
- Results
- Next steps

Motivation

Motivation

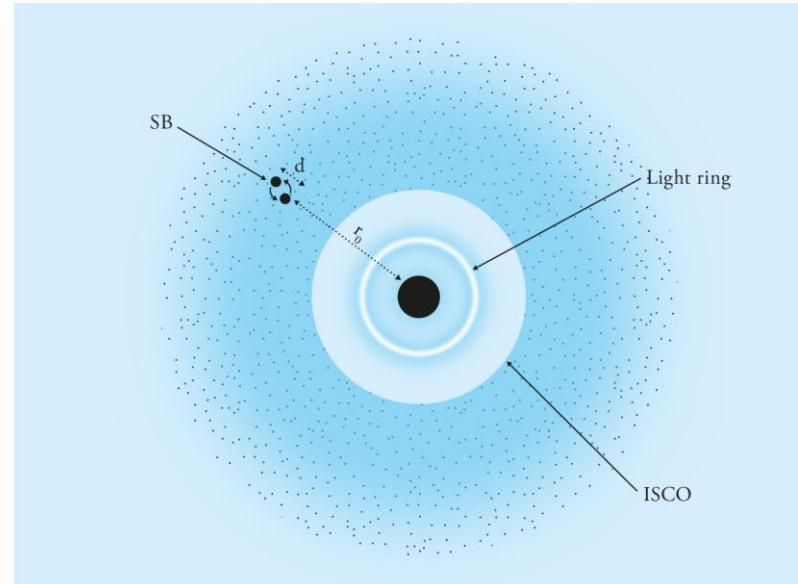
In Active Galactic Nuclei, Supermassive Black Holes are surrounded by dynamical environments that produce a lot of radiation.

Wave propagation in these environments is almost always studied in the geometric optics limit – **interesting Physics is lost!**

Motivation

In Active Galactic Nuclei, Supermassive Black Holes are surrounded by dynamical environments that produce a lot of radiation.

Wave propagation in these environments is almost always studied in the geometric optics limit – **interesting Physics is lost!**



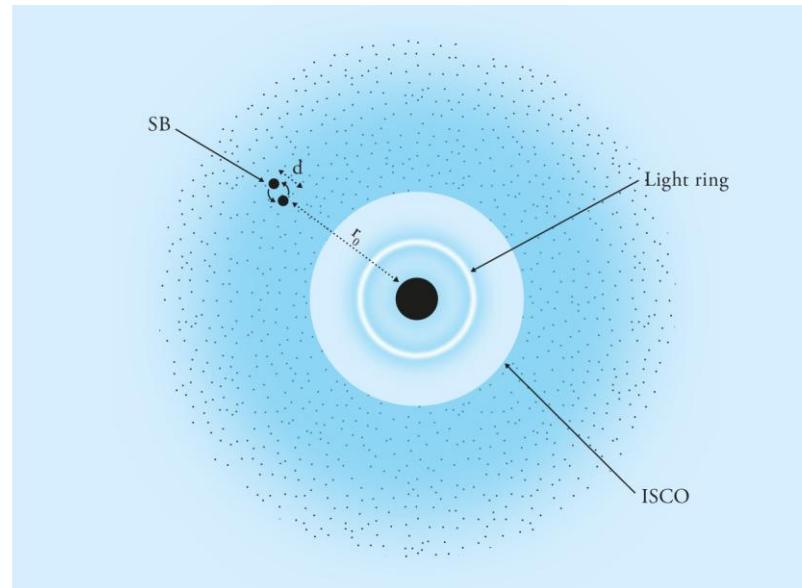
Binary EMRI orbiting a supermassive black hole

[this paper follows up on [arXiv:2506.14868](https://arxiv.org/abs/2506.14868) by João Sieiro dos Santos et al, where they did the same procedure for a gravitational quadrupole]

Motivation

In Active Galactic Nuclei, Supermassive Black Holes are surrounded by dynamical environments that produce a lot of radiation.

Wave propagation in these environments is almost always studied in the geometric optics limit – **interesting Physics is lost!**



Binary EMRI orbiting a supermassive black hole

We use Black Hole Perturbation Theory to study the radiation emitted by a dipole in this type of environment.

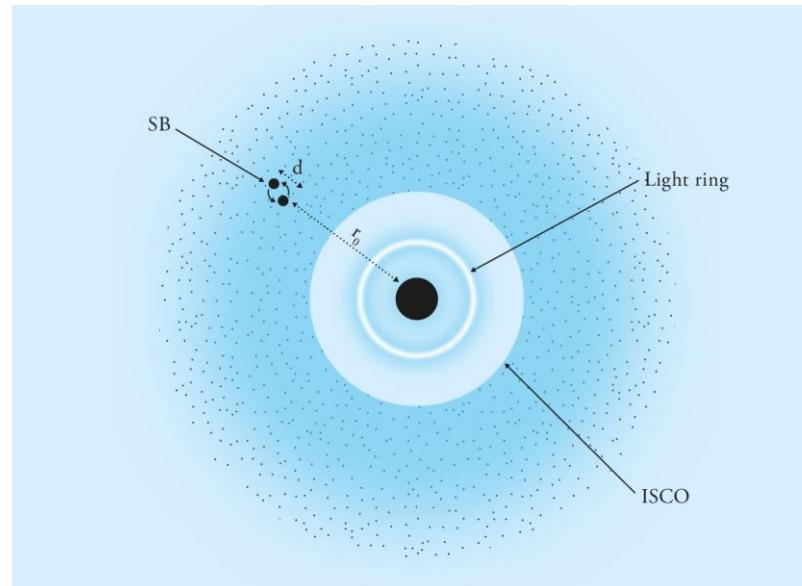
This is the **first ever** first principles model for a radiation source moving in Kerr spacetime.

[this paper follows up on [arXiv:2506.14868](https://arxiv.org/abs/2506.14868) by João Sieiro dos Santos et al, where they did the same procedure for a gravitational quadrupole]

Motivation

In Active Galactic Nuclei, Supermassive Black Holes are surrounded by dynamical environments that produce a lot of radiation.

Wave propagation in these environments is almost always studied in the geometric optics limit – **interesting Physics is lost!**



Binary EMRI orbiting a supermassive black hole

We use Black Hole Perturbation Theory to study the radiation emitted by a dipole in this type of environment.

This is the **first ever** first principles model for a radiation source moving in Kerr spacetime.

Guiding question: how is the radiation of a dipole affected when it is orbiting a rotating black hole?

[this paper follows up on [arXiv:2506.14868](https://arxiv.org/abs/2506.14868) by João Sieiro dos Santos et al, where they did the same procedure for a gravitational quadrupole]

Theoretical Model

First, we need to be able to describe to **describe the dipole** in a general spacetime, in our case, Kerr.

Theoretical Model

First, we need to be able to describe to **describe the dipole** in a general spacetime, in our case, Kerr.

Given a density current J^μ , **Dixon's formalism** says the electric dipole associated is

$$p^\alpha = \int_{\Sigma(\tau, U)} x^\alpha J^\mu d\Sigma_\mu.$$

Theoretical Model

First, we need to be able to describe to **describe the dipole** in a general spacetime, in our case, Kerr.

Given a density current J^μ , **Dixon's formalism** says the electric dipole associated is

$$p^\alpha = \int_{\Sigma(\tau, U)} x^\alpha J^\mu d\Sigma_\mu.$$

$$J^\mu = 2 \int \nabla_\alpha \left(u^{[\alpha} p^{\mu]} \delta^{(4)}(x - z(\tau)) \right) d\tau.$$

Theoretical Model

We plug this 4-current into **Teukolsky's equation**:

$$\mathcal{D}\phi_2 = \mathcal{T}(J^\mu),$$

where \mathcal{D} is a second order linear differential operator and \mathcal{T} is the source term, which depends on J^μ .

Theoretical Model

We plug this 4-current into **Teukolsky's equation**:

$$\mathcal{D}\phi_2 = \mathcal{T}(J^\mu),$$

where \mathcal{D} is a second order linear differential operator and \mathcal{T} is the source term, which depends on J^μ .

The frequencies excited by the system are

$$\omega_{mpq} = m\Omega_0 + p\Omega_p + q\Omega_d,$$

where Ω_0 is the **orbit** frequency, Ω_p is the **precession** frequency of the dipole, Ω_d is the **dipole** frequency, and $p \in \{0, \pm 1\}$, $q \in \{\pm 1\}$.

Computational Methodology

We implemented a code that computes a **semi-analytic expression** for the amplitudes Z^∞ in the decomposition

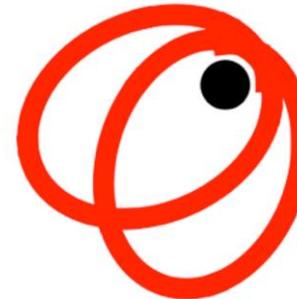
$$\phi_2 \sim \sum_{l,m,p,q} Z_{lmpq}^\infty {}_{-1}S_{lm\omega_{mpq}} e^{im\varphi} \frac{e^{-i\omega_{mpq}u}}{r}$$

Computational Methodology

We implemented a code that computes a **semi-analytic expression** for the amplitudes Z^∞ in the decomposition

$$\phi_2 \sim \sum_{l,m,p,q} Z_{lmpq}^\infty -_1 S_{lm\omega_{mpq}} e^{im\varphi} \frac{e^{-i\omega_{mpq}u}}{r}$$

For now, we are using **BHToolkit** to compute numerical values. However, since **high frequencies** excite higher harmonic modes, the toolkit becomes **inefficient** in this regime – we may need to upgrade.



BHToolkit logo

Results

Results

As a benchmark, we compute the **radiated power at infinity** for a standing dipole at fixed $r = R$ in Kerr spacetime. We compare the result with the classical **Larmor's formula**

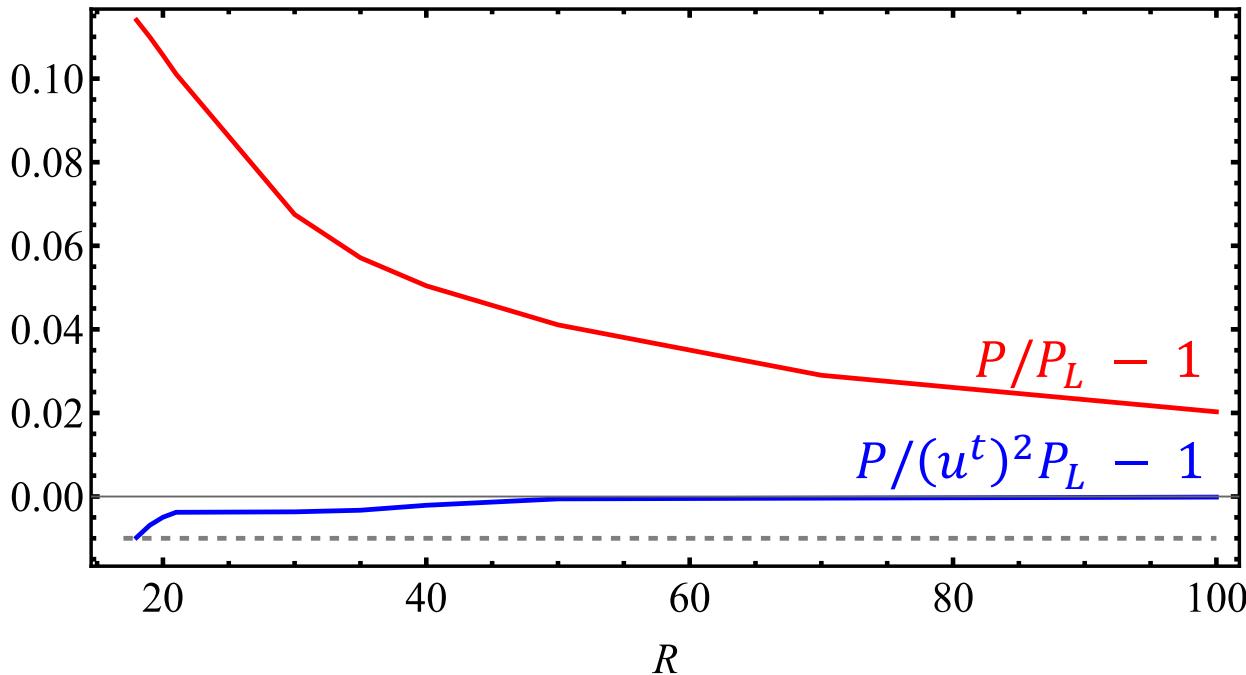
$$P_L = \frac{p^2 \omega^4}{12\pi\epsilon_0}.$$

Results

As a benchmark, we compute the radiated power for a standing dipole at fixed $r = R$ in Kerr spacetime. We compare the result with the classical Larmor's formula. We should also **correct for gravitational redshift** by a factor of $(u^t)^2$.

Results

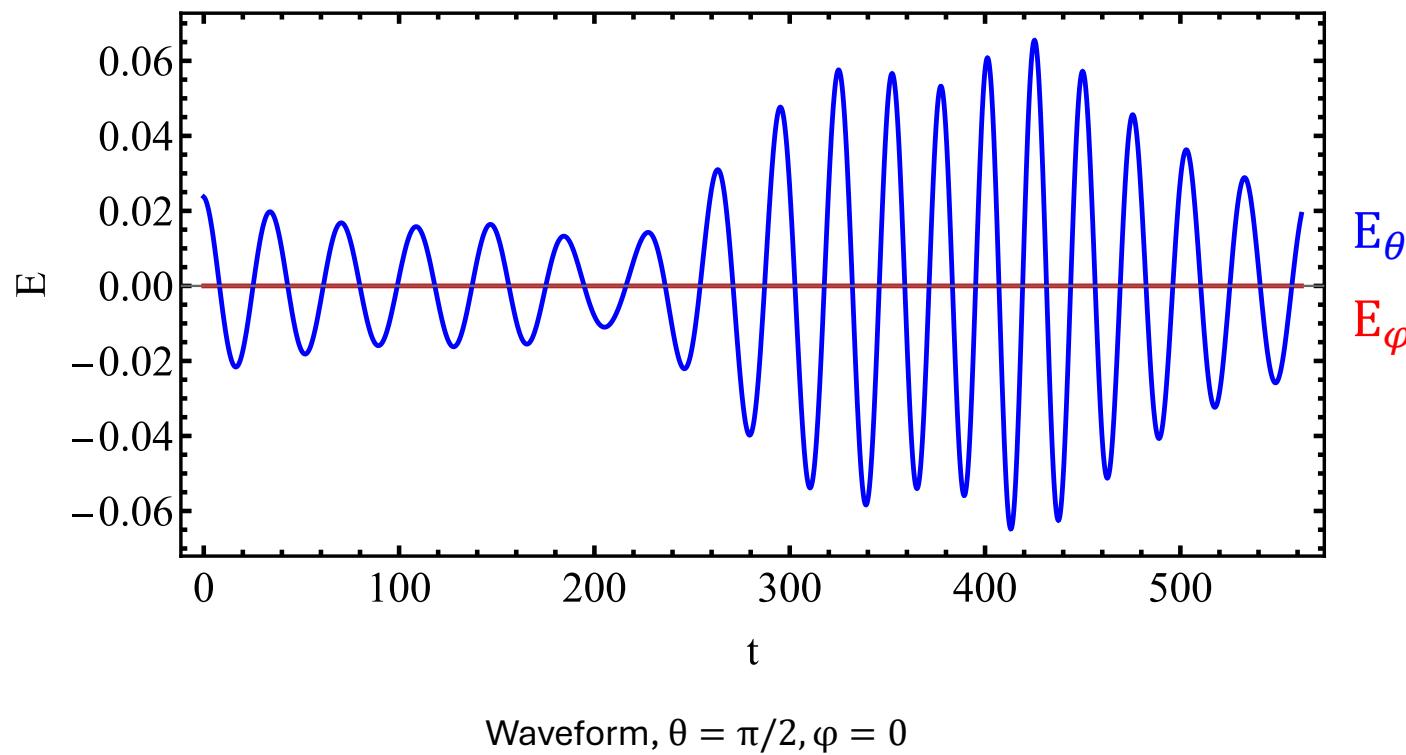
As a benchmark, we compute the radiated power for a standing dipole at fixed $r = R$ in Kerr spacetime. We compare the result with the classical Larmor's formula. We should also **correct for gravitational redshift** by a factor of $(u^t)^2$.



**Remarkable agreement,
even up to $R \sim 20M$!**

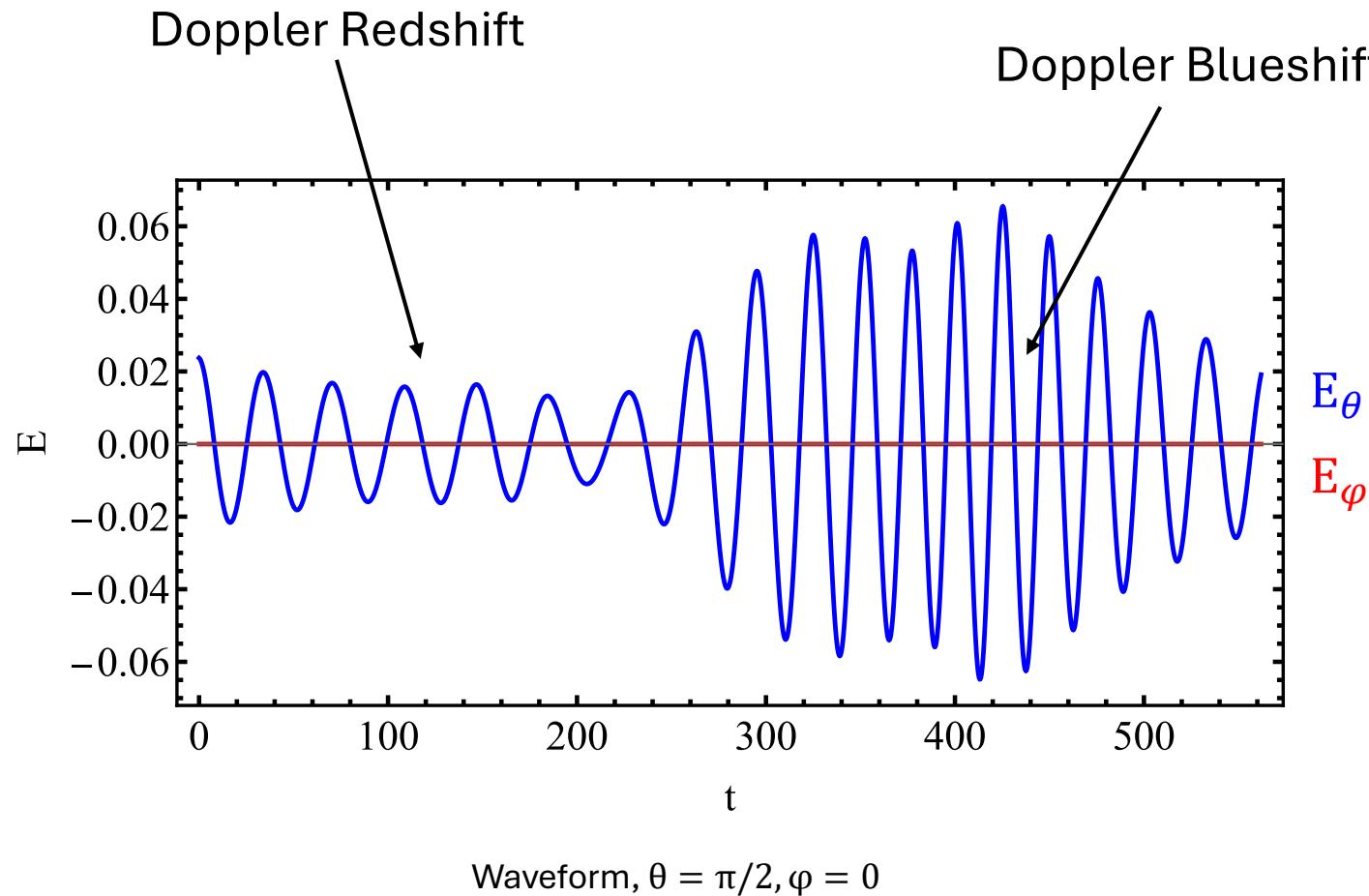
Results

$M = 1$,
 $a = 0$,
 $\Omega_d = 0.2$,
 $R = 20$



Results

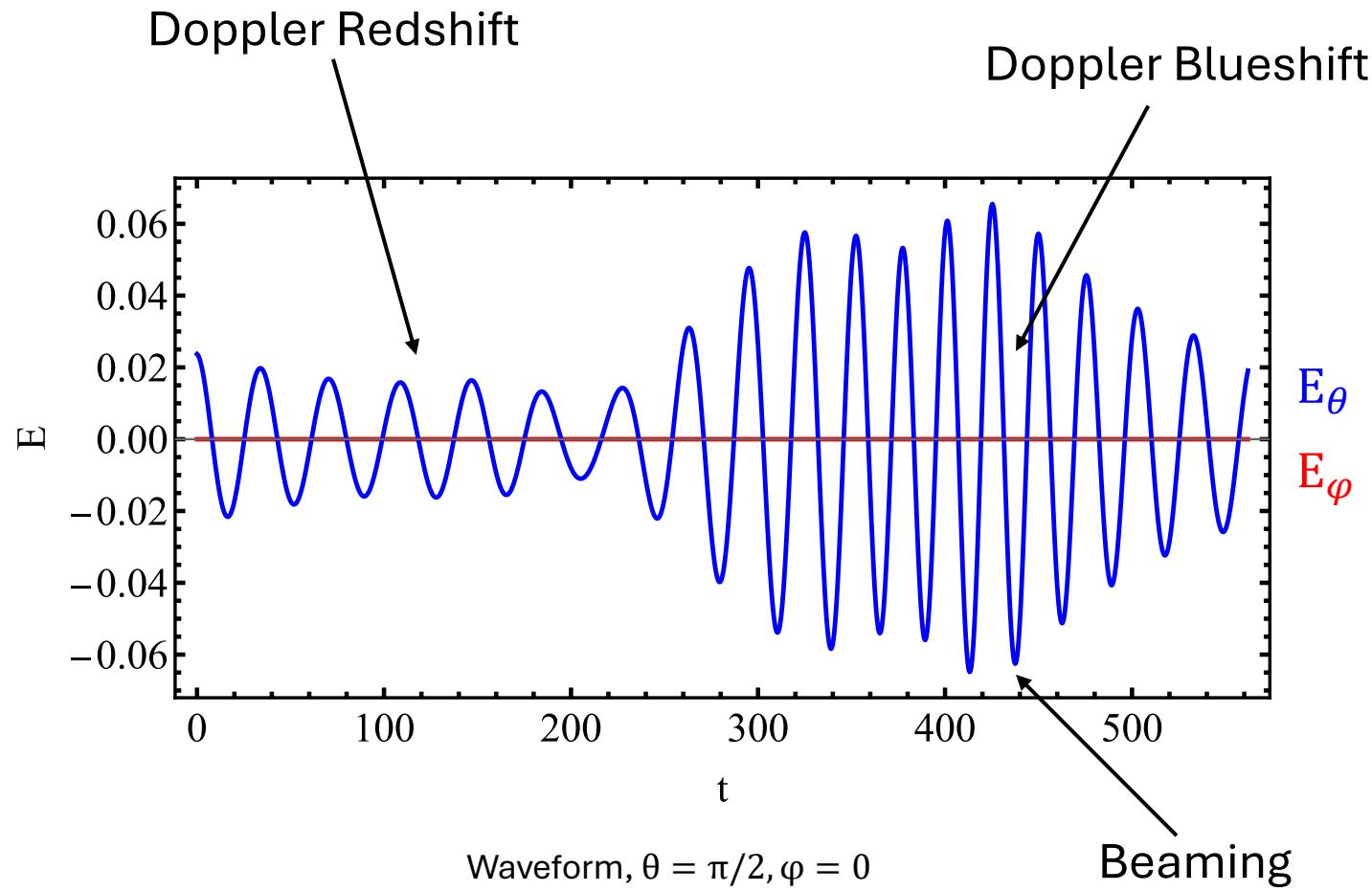
$$\begin{aligned}M &= 1, \\a &= 0, \\\Omega_d &= 0.2, \\R &= 20\end{aligned}$$



PRELIMINARY

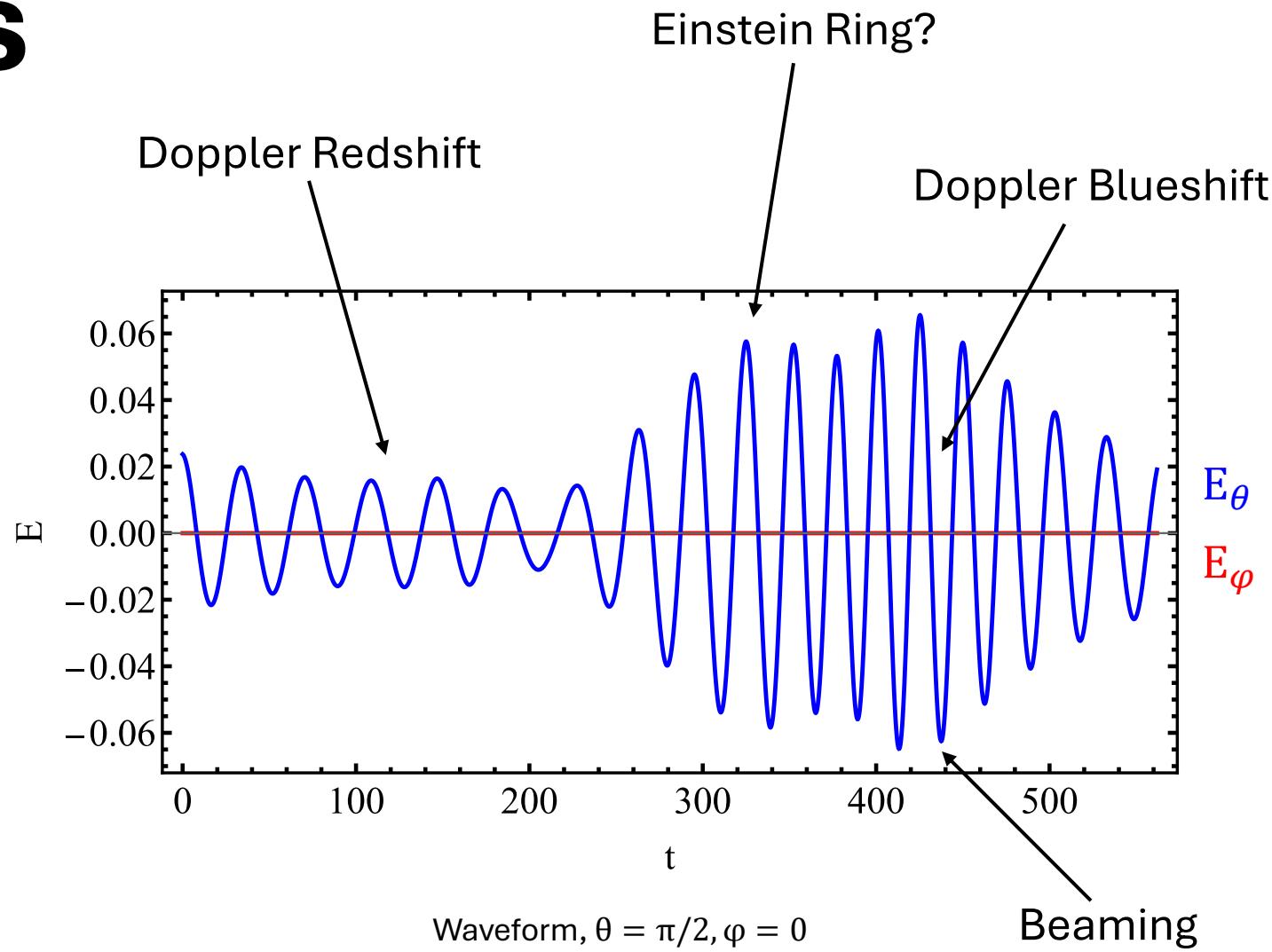
Results

$M = 1$,
 $a = 0$,
 $\Omega_d = 0.2$,
 $R = 20$



Results

$M = 1$,
 $a = 0$,
 $\Omega_d = 0.2$,
 $R = 20$



Next Steps

Our next objectives include:

- Compute waveforms and amplitudes for the most general case
- Study other effects such as helicity-dependent scattering
- Implement incoherent radiation
- Explore the low-frequency limit analytically

Next Steps

Our next objectives include:

- Compute waveforms and amplitudes for the most general case
- Study other effects such as helicity-dependent scattering
- Implement incoherent radiation
- Explore the low-frequency limit analytically

Thank You!