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Regularisation within classical theory?
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Overview of NLE

e NLE Lagrangian density: £(F,G)

Electromagnetic invariants: F = F,pF®, G = F,p, « F2P

e Maxwell's weak field (MWF) limit:
L=—-F/4+0o(H), H=VF>+G?asH =0

e QED weak field (QEDWEF) limit:
L=—-F/4+x(4F>+7G?) + o(H?),as H — 0,
k= a?/(360m2)
motivated by Euler-Heisenberg effective theory
[W. Heisenberg, H. Euler; Z. Phys. 98 (1936)]



Euler-Heisenberg Lagrangian

1-loop QED correction
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Yy — 7y scattering, birefringence...



Constraints on BH regularisation

No-go results

e BHs with @ # 0 sourced by L(F, G) obeying the MWF limit
are not regular

[K. A. Bronnikov; Phys. Rev. D 63 (2001)]
[A. Bokuli¢, T. Juri¢, I. Smoli¢; Phys. Rev. D 106 (2022)]
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Weak field limit

e L(F) sourcing regular BHs often don't satisfy the MWF limit
Mass and charge

e not independent

Motivation: can we find a better model?

[A. Bokuli¢, E. Franzin, T. Juri¢, I. Smoli¢; Phys. Lett. B 854 (2024)]
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Generalised Maxwell's equations:

P Q

B, = . E(0rL) = B(3gL) = —; 5

Einstein's field equations:
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Reverse-engineering procedure

Simplification:
e E,=0and Q =0
° ﬁ(]:,g) = J(]:) +IC(Q) and ag/C(O) =0

Generalised Maxwell's equations v
Einstein's equations:

Notice: F = 2B? = 2P?/r*

r=(2P2/F)1/4
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Solution

Conditions on m(r):

1. the existence of a BH horizon

2. L has to satisfy the QEDWF limit

3. the invariants R, R.pR?®, R.peqR?P°? are bounded

2M — P?r ! 4 or®
— Rational function: 2m(r) = 1 +rb _;_ o
.

Reconstructed theory:

o J(F)= —%]—"—i— %}'2—1—(’)(}"11/4) as F — 0*

e mass-charge relation: M ~ P3/2
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e L has correct weak field limit (<)
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Questions:

e stability, formation mechanism...

e regular dyonic BHs
[A. Bokuli¢, T. Juri¢, I. Smoli¢; arXiv:2510.23711 [gr-qc] (2025)]

e fine tuning of mass and charge: lvica's talk
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