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Regular BHs

Bardeen solution [J. M. Bardeen; Proceeding of GR5 (1968)]

� metric: ds2 = −f (r)dt2 + f −1(r)dr2 + r2dΩ2,

f (r) = 1− 2µr2

(r2 + g2)3/2

� corresponding nonlinear electrodynamics Lagrangian (NLE):

[E. Ayón-Beato, A. Garćıa; Phys.Lett. B493 (2000)]

L = −3µ

g3

(
g
√
2F

2+ g
√
2F

)5/2

� g - magnetic charge, µ - mass

Regularisation within classical theory?
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Overview of NLE

� NLE Lagrangian density: L(F ,G)
Electromagnetic invariants: F = FabF

ab, G = Fab ⋆ F
ab

� Maxwell’s weak field (MWF) limit:

L = −F/4+ o(H), H =
√
F2 + G2 as H → 0

� QED weak field (QEDWF) limit:

L = −F/4+ κ(4F2 + 7G2) + o(H2), as H → 0,

κ = α2/(360m4
e)

motivated by Euler-Heisenberg effective theory

[W. Heisenberg, H. Euler; Z. Phys. 98 (1936)]
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Euler-Heisenberg Lagrangian

1-loop QED correction

Effective Lagrangian:

ω ≪ me

L(EH) = − 1
4 F + α2

360m4
e

(
4F2 + 7G2

)
+O(α3)

γγ → γγ scattering, birefringence...
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Constraints on BH regularisation

No-go results

� BHs with Q ̸= 0 sourced by L(F ,G) obeying the MWF limit

are not regular

[K. A. Bronnikov; Phys. Rev. D 63 (2001)]

[A. Bokulić, T. Jurić, I. Smolić; Phys. Rev. D 106 (2022)]

Weak field limit

� L(F ) sourcing regular BHs often don’t satisfy the MWF limit

Mass and charge

� not independent

Motivation: can we find a better model?

[A. Bokulić, E. Franzin, T. Jurić, I. Smolić; Phys. Lett. B 854 (2024)]

4



Constraints on BH regularisation

No-go results

� BHs with Q ̸= 0 sourced by L(F ,G) obeying the MWF limit

are not regular

[K. A. Bronnikov; Phys. Rev. D 63 (2001)]
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Reverse-engineering procedure

Idea: from a chosen regular metric, reconstruct L(F ,G)
[K. A. Bronnikov; Phys. Rev. D 63 (2001)]

[Z.-Y. Fan, X. Wang; Phys. Rev. D 94 (2016)]

Static, spherically symmetric BHs:

ds2 = −
(
1− 2m(r)

r

)
dt2 +

1

1− 2m(r )
r

dr2 + r2(dθ2 + sin2 θdϕ2)

Generalised Maxwell’s equations:

Br =
P

r2
, Er (∂FL)− Br (∂GL) = − Q

4r2

Einstein’s field equations:

−m′(r)

r2
= L− QEr

r2
, −m′′(r)

2r
= L− 4P2

r4
(∂FL)− G(∂GL)
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Reverse-engineering procedure

Simplification:

� Er = 0 and Q = 0

� L(F ,G) = J (F ) +K(G) and ∂GK(0) = 0

Generalised Maxwell’s equations ✓
Einstein’s equations:

−m′(r)

r2
= J (F ) , −m′′(r)

2r
= J (F )− 4P2

r4
∂FJ

Notice: F = 2B2
r = 2P2/r4

Key equation:

J (F ) = −m′(r)

r2

∣∣∣
r=(2P2/F )1/4
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Solution

Conditions on m(r):

1. the existence of a BH horizon

2. L has to satisfy the QEDWF limit

3. the invariants R, RabR
ab, RabcdR

abcd are bounded

→ Rational function: 2m(r) =
2M − P2r−1 + sr−5

1+ br−8

Reconstructed theory:

� J (F ) = −1

4
F +

5s

8P4
F2 +O(F11/4) as F → 0+

� mass-charge relation: M ∼ P3/2
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Summary and open questions

Regular BH solution:

� L has correct weak field limit

� magnetically charged

� M and P are related

Questions:

� stability, formation mechanism...

� regular dyonic BHs

[A. Bokulić, T. Jurić, I. Smolić; arXiv:2510.23711 [gr-qc] (2025)]

� fine tuning of mass and charge: Ivica’s talk
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