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| Introduction & Motivations

o Black holes observed in the universe are not isolated systems. They are often
surrounded by matter and embedded in huge electromagnetic fields.
In General Relativity there are known exact and analytical solutions which de-
scribe Schwarzschild or Kerr black holes embedded in the Bonnor-Melvin exter-
nal electromagnetic field (Ernst 1976) or into the Levi-Civita-Bertotti-Robinson
external electromagnetic field (Alekseev-Garcia 1996, Podoslky-Ovcharenko 2025).
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| Introduction & Motivations

o Black holes observed in the universe are not isolated systems. They are often
surrounded by matter and embedded in huge electromagnetic fields.
In General Relativity there are known exact and analytical solutions which de-
scribe Schwarzschild or Kerr black holes embedded in the Bonnor-Melvin exter-
nal electromagnetic field (Ernst 1976) or into the Levi-Civita-Bertotti-Robinson
external electromagnetic field (Alekseev-Garcia 1996, Podoslky-Ovcharenko 2025).

o Which are the differences between the two black hole families in external elec-

tromagnetic field?

o Which are the differences between the two background electromagnetic fields?

o It is possible to extend and unify these two black hole family to build a black
hole embedded into a more general electromagnetic field?

o Theory: General Relativity coupled with Maxwell electromagnetism

1 4 G
Igpv, Apl = m/d z\/—g [R, % FMVF'L“/]
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Schwarzschild in Bertotti-Robinson electromagnetic field

Schwarzschild in the external Bertotti-Robinson electromagnetic field (Podoslky-
Ovcharenko 2025)

dr? r2d02
Ar(r) 1+m2B2cos29

1
ds? = o2 |:7Ar(r)dt2 +

+ r2 sin2 0(1 + m232 0032 G)Ai dga2

with )
Ar(r) = (1 e m232> (1 + 327‘2) ,
T

Q(r, 0) := \/1 + B272 — B2rcos? 0(r — 2m — rB2m?2)
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Schwarzschild in the external Bertotti-Robinson electromagnetic field (Podoslky-
Ovcharenko 2025)

dr? r2d02
Ar(r) 1+m2B2cos29

2 1

ds :QQ

|:7Ar(r)dt2 + + r2 sin2 0(1 + m232 0032 G)Ai dga2

with )
Ap(r) = <1 o m232> (1 + B2'r2) R
r

Q(r, 0) := \/1 + B272 — B2rcos? 0(r — 2m — rB2m?2)

2 2
1+ mB“rcos® 0 —Q
Ay = <07 0,0, ALP)

BQ
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Schwarzschild in the external Bertotti-Robinson electromagnetic field (Podoslky-
Ovcharenko 2025)
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2 2
1 B 590 —Q
A= (00 LI 020 )

For B=0: Schwarzschild
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Schwarzschild in Bertotti-Robinson electromagnetic field

Schwarzschild in the external Bertotti-Robinson electromagnetic field (Podoslky-
Ovcharenko 2025)

dr? r2d02
Ar(r) 1+m2B2cos29

2 1

ds =2

|: Ar(r )dt2 + + 2 sin? 0(1 + m2 B2 cos? G)Ai dga2

with )
Ap(r) = <1 o m232> (1 + B2'r2) R
r

Q(r, 0) \/1+B2 2 — B2rcos?0(r — 2m — rB2m?2)

2 2
1 B 590 —Q
A= (00 LI 020 )

For B=0: Schwarzschild
For m=0: Bertotti-Robinson (z := cos0)

d'r‘2 r d:c

2 1 2.2, .2
d: = ——  _ |-(1+8B dt +
s { (1+ B“r?) +(1+B2T2) 19

1+ B2r2(1 — z2)

+r (1—r)d4p s

Br2(1 — z2)
= 0,0,0, -

b
T
|

1+ B2r2(1 — 22) + /1 + B272(1 — 22)
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Bertotti-Robinson electromagnetic background

Bertotti-Robinson:

2,2
2 1 2 2..9 T redx
d = ——s5——5- |—-(1+B dt” + +
’ { ( ) (1+B2r2)  (1-22)

2 2 2
+r°(1l—27)d s
14 B2r2(1 — 22) ( ) de

Br2(1 — xz)

Ay = [0,0,0,—
14 B2r2(1 — 22) + /1 4+ B272(1 — 22)
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Bertotti-Robinson electromagnetic background

Bertotti-Robinson:
T n r2d12
(1+ B2r2)  (1-a2)

1
ds? = —|:—(1+BQT2)dt2+ +r2(1—x2)d¢:2 s

14 B2r2(1 — 22)

Br2(1 — xz)

Ay = [0,0,0,—
14 B2r2(1 — 22) + /1 + B272(1 — 2)

Thanks to the change of coordinates

V' B2R2 +sin2 ¢ BR 1
r= —-—, [ e N B — —,
Bcos 6 vV/B2R2 +sin2 0 e
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Bertotti-Robinson electromagnetic background

Bertotti-Robinson:

r2d12

(1+ B2r2) * (1 —z2)

1
ds? = —|:—(1+B2r2)dt2+ +r2(1—x2)d¢:2 s

14 B2r2(1 — 22)

Br2(1 — acz)

Ay = [0,0,0,—
14 B2r2(1 — 22) + /1 + B272(1 — 2)

Thanks to the change of coordinates

V' B2R2 +sin2 ¢ BR 1
r= —-—, [ e N B — —,
Bcos 6 vV/B2R2 +sin2 0 e

it takes a more common form

2 2
R dR
d52 = — (1 + —2> dt2 4+ — + 62 <d92 + sin2 0dap2>
e R2
e
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| Schwarzschild in Bertotti-Robinson-Bonnor-Melvin field

Thanks to the Harrison transformation (applied to the Schwarzschild-Bertotti-Robinson
seed) we can build Schwarzschild embedded in the Bertotti-Robinson-Bonnor-Melvin
(elettro)magnetic field

2 2
2 2,2 1|92 9 oy fdr dx
ds® = —fALd = dt” — —
s fwsa-%f{p e <Ar+Ax ;
with
B —4B*? A, VA AL
fir,o) = s, plnam) = YoroT
[b 2mra2 2 2 Q
(b+2B) (B“mra*+1) — (b= +2bB +2B< ) Q
2
Ap(r) = (1 _am m232> (1 + 327‘2) s Ag(z) == (1 — x2)(1 + 32m2m2) s
r
Q — V14 B22 — B2rcos2 6(r — 2m — rB2m? IS
(r,z) = + B4r< — B4rcos® 0(r — 2m — rB“m?) , 'y(r,:v).fi og o

and magnetic potential

—2r2(b+ B)Ag
2Q (Berx2 + 1) + br2(b + 2B)Agx + 2B2y [:c2 <32m2r + 2m — T) + r] +2 ’

A¢, (r,z) =
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Schwarzschild in Bertotti-Robinson-Bonnor-Melvin field

Y

010005000 005 010

B=2b=0.1

d

B=0,b=0 B=0.3,b=-04 B=0.5,b=—0.6

Figure: Embedding in Euclidean three-dimensional space E® of the event horizon of the
black hole distorted by the presence of both the external Bertotti-Robinson and
Bonnor-Melvin magnetic backgrounds, for m =1
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| Limit to Schwarzschild in Bonnor-Melvin universe

For B=0: Schwarzschild embedded in the Bonnor-Melvin (elettro)magnetic field

5

2 2 2 2 2,2 2 2 2
b 2 d d 1-— d
s = |1+ 27 (1 - 2% 7<17—m>dt2+ LA rT(1-at) de
4 r 1_2% (1 —x2) 2,2
[1+T(1—m2)

2 2
2br4(1 —
A#:[0,0,0, r-(1—27) }

44 b2r2(1 — 22)
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| Limit to Schwarzschild in Bonnor-Melvin universe

For B=0: Schwarzschild embedded in the Bonnor-Melvin (elettro)magnetic field

2 2 2 2 2,2 2 2 2
b 2 d d 1-— d
s = |1+ 27 (1 - 2% 7<17—m>dt2+ LA . r(1—2%) dy ,
4 r 1_@ (1 —x2) 2,2 9 2
|:1+T(1—:1c)

2 2
2br4(1 —
A#:[0,0,0, r-(1—27) }

44 b2r2(1 — 22)

For B=0 & m=0: Bonnor-Melvin magnetic Universe

2 2 2 2,2 2 2
b d 1—
1+ Tr(l —mz):| {—dt2+dr2 + (: 12)} + r’d-a%) do”
’ [1+ Tb2T2 (1 7m2)]

d32 =

2br2(1 - 12) :|

Ay = 10,00, — T )
" [ 1+ 02r2(1 — 22)
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m=0: Magnetic Bertotti-Robinson-Bonnor-Melvin background

dr? r2da? 2 (1- ;L'2) 2

2
+ + dp?
14+ B2r2 ~ (1-a2)| A2 [14 B2r2(1 - 22)]?

2

ds® = A

—(1+ B%?)a® +
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m=0: Magnetic Bertotti-Robinson-Bonnor-Melvin background

2 2

ds® = A

—(1+ B%?)a® + dr’ rds” } r(1-o?) 2

+ de”
14+ B2r2  (1-22) A2 [1+ B2r2(1 — 22)]2

with
—b(b + 2B) + (b2 + 2bB + 2B%)\/1 + B2r2(1 — 22)
A(r,z) = 5 ) 5 ;
2B4[1+ B4r=(1 — x4)]
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m=0: Magnetic Bertotti-Robinson-Bonnor-Melvin background

2 2, 2 2 2
dr 2 dx G
ds® = A | (1 + B3 P)a® + — o ¢ rtd-ef) Sdo”
1+ B2r (1—=%) A2 [1+ B2r2(1 — 22)]
with
—b(b + 2B) + (b2 + 2bB + 2B%)\/1 + B2r2(1 — 22)
A(r,z) = ;
2B2[1 + B2r2(1 — 22)]
2 2
26+ B)r2(1 — =
a=looo (b + Byr?(1 — a?)

—(b2 + 2bB + 2B2)r2(1 — 22) + 2[1 +4/1+ B2r2(1 — 1-2)]
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m=0: Magnetic Bertotti-Robinson-Bonnor-Melvin background

2

=A% |-+ B%®a® +

dr? r2da? :| 7'2(1 - ;L'2) 2
ds

+ de”
14+ B2r2  (1-22) A2 [1+ B2r2(1 — 22)]2
with
—b(b + 2B) + (b2 + 2bB + 2B%)\/1 + B2r2(1 — 22)
2B2[1 + B2r2(1 — 22)]

2(b + B)r(1 — 22)

Ap =1 0,0,0,
—(b2 + 2bB + 2B2)r2(1 — 22) + 2[1 +4/1+ B2r2(1 — 1-2)]

The general magnetic background coincides with the analytical continuation

2
b
t = ip o =it Q = ib+ B), k— —B2, m—>—?—bB—BZ,
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m=0: Magnetic Bertotti-Robinson-Bonnor-Melvin background

2

=A% |-+ B%®a® +

dr? r2da? :| 7'2(1 - ;L'2) 2
ds

+ de”
14+ B2r2  (1-22) A2 [1+ B2r2(1 — 22)]2
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—b(b + 2B) + (b2 + 2bB + 2B%)\/1 + B2r2(1 — 22)
2B2[1 + B2r2(1 — 22)]

2(b + B)r(1 — 22)

Ap =1 0,0,0,
—(b2 + 2bB + 2B2)r2(1 — 22) + 2[1 +4/1+ B2r2(1 — 1-2)]

The general magnetic background coincides with the analytical continuation

2
b
t = ip o =it Q = ib+ B), k— —B2, m—>—?—bB—BZ,

of the topological Reissner-Nordstrom metric

2 2 2
2 d d.
ds? = — k——m+% at? + L+ s 2 - kaP)ap?
T r k72m+Q 1—kzx
T r2

A= Apdat = e dt .
T
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Limit to Schwarzschild in a gravitational external background

For b = -B: Schwarzschild black hole in a gravitational background, A;, = [0, 0,0, 0]

ds2 1+ B2mrcos? 0 + Q)2 £ )dt2 n dr? 4 r2d6? +4T‘2 sin2 ¢ Ag(0) Ai dgp2
s = —Jr )
404 f(r) — Ag(0) (1 + B2mrcos? 6 + Q)2
2
fir)y = (1 _=m o B2m2> 1+ 3272) R AO(G) = 1+ B2m2 cos2 0,
T
Q(r,0) = \/1+B2T[r+(2m+32m2r—r)cos29] s Ap = 1/(1+B2m2) .

Static, type I, black hole with a “gravitational hair” and squashed event horizon

o z
1 B ! |
2 1

(a) m=1,B=0 (b) m=1,B=04 (¢) m=1, B=0.5
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~ Pure gravitational background

2
1 1+ B2r2sin20 d2 42'20(12
ds2 = + + B<r<sin —(1+32r2)dt2+%+7‘2d92 i < sin 4 .
2(1+B2r25in29) 1+ B2r (1+ 1+B2T25in29)
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~ Pure gravitational background

2
1+ V1 + B2r2sin2 6 dr? 4r? sin? 0 de?
ds2 = + + B4r<sin —(1+BQ7‘2)dt2 i % 2402 |+ r< sin P .
2 (1+ B2 Zsin20) L+ B%r (1+ V1 + B2 Z5in20)
Thanks to the change of coordinates
V4p — 4p? + B2¢2 Bq B2

r—- - 6 — arccos
B(2p—1)

\V4p — 4p? + B2¢? 2

the background is diffeomorphic to
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~ Pure gravitational background

2
1+ V1 + B2r2sin2 6 dr? 4r? sin? 0 de?
ds2 = + + B4r<sin —(1+BQ7‘2)dt2 i % 2402 |+ r“ sin P .
2 (1+ B2 Zsin20) L+ B%r (1+ V1 + B2 Z5in20)
Thanks to the change of coordinates
V4p — 4p? + B2¢2 Bq B2

r—- - 6 — arccos

- -,
B(2p— 1) ? ’

\V4p — 4p? + B2¢? 2

the background is diffeomorphic to

2 2 o dg? dp? P(p) , 2
ds® = - d e 9P |, TP)
s =p { Q(g)dt” + °@ + P(p)} + 2
with
Qq) = 1+ B%¢? | P(p) = B%p — B%p?
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~ Pure gravitational background

2
1+ V1 + B2r2sin2 6 dr? 4r? sin? 0 de?
ds2 = + + B4r<sin —(1+BQ7‘2)dt2 i % 2402 |+ r“ sin P .
2 (1+ B2 Zsin20) L+ B%r (1+ V1 + B2 Z5in20)
Thanks to the change of coordinates
V4p — 4p? + B2¢2 Bq B2

r—- - 6 — arccos

- -,
B(2p— 1) ? ’

\V4p — 4p? + B2¢? 2

the background is diffeomorphic to

2 2
2 _ 2 2, dq dp P(p) , 2
ds® =p° |-Q(q)dt* + — + —— | + —~
{ Q) P(p) p?
with 2 2 2 2 2
Q(q) =1+ B¢, P(p) =B"p— B"p
Which corresponds to the double Wick rotation
s S - 2 . B? " .
t—ip, @ — it , k — —B%, m—>—7, T —q, T —p
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~ Pure gravitational background

2
1+ V1 + B2r2sin2 6 dr? 4r? sin? 0 de?
ds2 = + + B4r<sin —(1+BQ7‘2)dt2 i % 2402 |+ r“ sin P .
2 (1+ B2 Zsin20) L+ B%r (1+ V1 + B2 Z5in20)
Thanks to the change of coordinates
V4p — 4p? + B2¢2 Bq B2

r—- - 6 — arccos

- -,
B(2p— 1) ? ’

\V4p — 4p? + B2¢? 2

the background is diffeomorphic to

2 2
2 _ 2 2, dgq dp P(p) 2
ds® =p° |-Q(q)dt* + — + —— | + —~
{ Q(a)  P(p) p?
with 2 2 2 2 2
Q(q) =1+ B¢, P(p)=B"p—B"p
Which corresponds to the double Wick rotation
N - 2 B2
t—ip, @ — it , k — —B“ | ﬁz—>—7, T —q, T —p
of the hyperbolic Schwarzschild metric
N A2 22 5.2
2 A 2m 2 dar 7 dT 2 ~ 2.0 .92
ds —7<k77>dt er‘l’m“rr (17kai)dtp .

T
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Summary & notable limits

Specializations of the electrovacuum solutions presented this talk
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Schwarzschild-Bonnor-Melvin

(m,, b)

type D
m=0 Bertotti—RobinSOll
magnetic field
(B)
type D
m=0 Bonnor-Melvin

magnetic Universe

B =0

el

Schwarzschild in
gravitational field
(m,, B)

(0)

type D

External grav-
itational field

(B)

Black hole in Bertotti-Melvin magnetic field



That’s all — Thank You

\

That’s all

iThank You!
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PRD 112 (2025) 10, 104077
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~ Introduction: Theory and Field Equations

Theory under consideration: General Relativity coupled with Maxwell electromag-

netism L G
/d4x\/jg [R— — FMVFHV
20}

167G

Iguv, Apl ==
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Introduction: Theory and Field Equations

Theory under consideration: General Relativity coupled with Maxwell electromag-

netism
1

4 G v
d*z\/—g |R— — Fu,F*
167rG/ Z g [ i) my ]

Field equations for the metric g, and electromagnetic vector potential Ay,

Iguv, Apl ==

R 2G 1
RHV - —guv = — <FHPFVP _ 79/;quon0>
2 i) 4

Au(v/—gF*)y =0

The Faraday tensor Fy, is defined from the gauge potential, Fuv := 0uAv — v Ap.
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~ Introduction: Theory and Field Equations

Theory under consideration: General Relativity coupled with Maxwell electromag-

netism
1

4 G v
d*z\/—g |R— — Fu,F*
167G / I g [ 1o g ]

Field equations for the metric g, and electromagnetic vector potential Ay,

Iguv, Apl ==

R 2G 1
RW/ - —guv = — <FH,DFVP _ *guquan[’F)
2 i) 4

Ou(v/=gFM") =0
The Faraday tensor Fy, is defined from the gauge potential, Fuv := 0uAv — v Ap.
The most generic axisymmetric and stationary spacetime, containing two commut-

ing Killing vectors 8; and 8y, can be written, for this theory, in the Lewis-Weyl-
Papapetrou (LWP) form as

ds? = —f (dt = wdp)® + 71 [p2dp® + €77 (ap” + d2?)]

All the three structure functions appearing in the metric f,w and ~ depends only
on the non-Killing coordinates (p, ).
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Theory under consideration: General Relativity coupled with Maxwell electromag-

netism
1

4 G v
d*z\/—g |R— — Fu,F*
167G / I g [ 1o g ]

Field equations for the metric g, and electromagnetic vector potential Ay,

Iguv, Apl ==

R 2G 1
RW/ - —guv = — <FH,DFVP _ *guquan[’F)
2 i) 4

Au(v/—gF*)y =0

The Faraday tensor Fy, is defined from the gauge potential, Fuv := 0uAv — v Ap.

The most generic axisymmetric and stationary spacetime, containing two commut-
ing Killing vectors 8; and 8y, can be written, for this theory, in the Lewis-Weyl-
Papapetrou (LWP) form as

ds? = —f (dt = wdp)® + 71 [p2dp® + €77 (ap” + d2?)]

All the three structure functions appearing in the metric f,w and ~ depends only
on the non-Killing coordinates (p, ).

A generic electromagnetic potential compatible with the spacetime symmetries, and
the circularity of the LWP metric, is given by A = Ay(p, z)dt + Ap(p, z)de.
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~ Ernst Equations

Ernst (Phys. Rev. 1968) discovered that, when the Einstein field equations are
restricted to the axisymmetric and stationary LWP ansatz, they reduce to a couple
of complex vectorial differential equations

(Ree+|2?)vZe = (Ve+28'Ve) Ve ,

(Ree+|®?) Vi = (Ve+22°Va) Vo
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Ernst Equations

Ernst (Phys. Rev. 1968) discovered that, when the Einstein field equations are
restricted to the axisymmetric and stationary LWP ansatz, they reduce to a couple
of complex vectorial differential equations

(Ree+|2?)vZe = (Ve+28'Ve) Ve ,

(Re e+ |2°) Ve = (?s+2q>*?q>)3q>

The complex Ernst potential are defined as
@ = Ay +idyp , E:=f—|®®¥| +ih,

where A<p and h can be obtained from

Vi, = —fr i1, x(VAp-wVAay),
Vh o= 5712, x Vu—2Im(@*Ve) .
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~Introduction: Symmetries of Ernst Equations

Ernst equations can be derived by an effective action

re®) = [d [ap [(%”‘1’*?‘1’) (Ver +20V8")  VoVor

(€ + &% +288%)? £+ EF 4200
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Introduction: Symmetries of Ernst Equations

Ernst equations can be derived by an effective action

I(S,@):/dz/dp[

(Ve +28* V@) (Ve + 20V %)

Yovaor

(€ + & +208%)?

T E4E* 1288

This action has a set of Lie point symmetries which form the SU(2,1) group.
These symmetries can be written as a set of five independent transformation:

Ernst Equations Symmetries (Lie point)

(€]
(1)

(I11)
(Iv)
(V)

£ — & =x\*¢
E—& =€+ib

&—¢ = 8,
1+ ic€
E—¢& =¢-25%® — pp*
£
E—¢& =

1—2a*® — aa*€

)

’

3 =\

> 3 =3
&
<I>—><I>/:7, s
1+ icE
» 3 =2+ ,
®
& o = taf

1—2a*® — aa*€

where b,c € R and «a, )\, 8 € C.
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Introduction: Symmetries of Ernst Equations

Ernst equations can be derived by an effective action

Yovaor

T E4E* 1288

(€, ®) = /dz/dp [(?5 128"V a) (Te* + 28V a¥)

(€ + & +208%)?

This action has a set of Lie point symmetries which form the SU(2,1) group.
These symmetries can be written as a set of five independent transformation:

Ernst Equations Symmetries (Lie point)

(I & — & =g , 3 =)o |,
(I1) E—é&=¢e+ib , > 3 =3

£ &
(I11) £—¢& = . , » o =~

1+ ic€ 1+ ic€
(Iv) E—¢& =eg—25%® —pp* > =d+8

’ & ’ ® + af

1% £ L & S
V) - 1—2a*%® — aa*E ’ - 1 —2a*® — aa*€

where b,c € R and «a, )\, 8 € C.

Some of these transformation are just gauge symmetries and can be reabsorbed by
a coordinate transformation, while others actually have non-trivial physical effects.
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