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Introduction & Motivations

Black holes observed in the universe are not isolated systems. They are often
surrounded by matter and embedded in huge electromagnetic fields.
In General Relativity there are known exact and analytical solutions which de-
scribe Schwarzschild or Kerr black holes embedded in the Bonnor-Melvin exter-
nal electromagnetic field (Ernst 1976) or into the Levi-Civita-Bertotti-Robinson
external electromagnetic field (Alekseev-Garcia 1996, Podoslky-Ovcharenko 2025).

Which are the differences between the two black hole families in external elec-
tromagnetic field?

Which are the differences between the two background electromagnetic fields?

It is possible to extend and unify these two black hole family to build a black
hole embedded into a more general electromagnetic field?

Theory: General Relativity coupled with Maxwell electromagnetism

I[gµν,Aµ] :=
1

16πG

∫
d
4
x
√

−g

[
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G

µ0
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.

Marco Astorino Black hole in Bertotti-Melvin magnetic field



Introduction & Motivations

Black holes observed in the universe are not isolated systems. They are often
surrounded by matter and embedded in huge electromagnetic fields.
In General Relativity there are known exact and analytical solutions which de-
scribe Schwarzschild or Kerr black holes embedded in the Bonnor-Melvin exter-
nal electromagnetic field (Ernst 1976) or into the Levi-Civita-Bertotti-Robinson
external electromagnetic field (Alekseev-Garcia 1996, Podoslky-Ovcharenko 2025).

Which are the differences between the two black hole families in external elec-
tromagnetic field?

Which are the differences between the two background electromagnetic fields?

It is possible to extend and unify these two black hole family to build a black
hole embedded into a more general electromagnetic field?

Theory: General Relativity coupled with Maxwell electromagnetism

I[gµν,Aµ] :=
1

16πG

∫
d
4
x
√

−g

[
R−

G

µ0
FµνF

µν
]

.

Marco Astorino Black hole in Bertotti-Melvin magnetic field



Introduction & Motivations

Black holes observed in the universe are not isolated systems. They are often
surrounded by matter and embedded in huge electromagnetic fields.
In General Relativity there are known exact and analytical solutions which de-
scribe Schwarzschild or Kerr black holes embedded in the Bonnor-Melvin exter-
nal electromagnetic field (Ernst 1976) or into the Levi-Civita-Bertotti-Robinson
external electromagnetic field (Alekseev-Garcia 1996, Podoslky-Ovcharenko 2025).

Which are the differences between the two black hole families in external elec-
tromagnetic field?

Which are the differences between the two background electromagnetic fields?

It is possible to extend and unify these two black hole family to build a black
hole embedded into a more general electromagnetic field?

Theory: General Relativity coupled with Maxwell electromagnetism

I[gµν,Aµ] :=
1

16πG

∫
d
4
x
√

−g

[
R−

G

µ0
FµνF

µν
]

.

Marco Astorino Black hole in Bertotti-Melvin magnetic field



Introduction & Motivations

Black holes observed in the universe are not isolated systems. They are often
surrounded by matter and embedded in huge electromagnetic fields.
In General Relativity there are known exact and analytical solutions which de-
scribe Schwarzschild or Kerr black holes embedded in the Bonnor-Melvin exter-
nal electromagnetic field (Ernst 1976) or into the Levi-Civita-Bertotti-Robinson
external electromagnetic field (Alekseev-Garcia 1996, Podoslky-Ovcharenko 2025).

Which are the differences between the two black hole families in external elec-
tromagnetic field?

Which are the differences between the two background electromagnetic fields?

It is possible to extend and unify these two black hole family to build a black
hole embedded into a more general electromagnetic field?

Theory: General Relativity coupled with Maxwell electromagnetism

I[gµν,Aµ] :=
1

16πG

∫
d
4
x
√

−g

[
R−

G

µ0
FµνF

µν
]

.

Marco Astorino Black hole in Bertotti-Melvin magnetic field



Introduction & Motivations

Black holes observed in the universe are not isolated systems. They are often
surrounded by matter and embedded in huge electromagnetic fields.
In General Relativity there are known exact and analytical solutions which de-
scribe Schwarzschild or Kerr black holes embedded in the Bonnor-Melvin exter-
nal electromagnetic field (Ernst 1976) or into the Levi-Civita-Bertotti-Robinson
external electromagnetic field (Alekseev-Garcia 1996, Podoslky-Ovcharenko 2025).

Which are the differences between the two black hole families in external elec-
tromagnetic field?

Which are the differences between the two background electromagnetic fields?

It is possible to extend and unify these two black hole family to build a black
hole embedded into a more general electromagnetic field?

Theory: General Relativity coupled with Maxwell electromagnetism

I[gµν,Aµ] :=
1

16πG

∫
d
4
x
√

−g

[
R−

G

µ0
FµνF

µν
]

.

Marco Astorino Black hole in Bertotti-Melvin magnetic field



Schwarzschild in Bertotti-Robinson electromagnetic field

Schwarzschild in the external Bertotti-Robinson electromagnetic field (Podoslky-
Ovcharenko 2025)

ds
2
=

1

Ω2

[
−∆r(r)dt

2
+

dr2

∆r(r)
+

r2dθ2

1 + m2B2 cos2 θ
+ r

2
sin

2
θ(1 + m

2
B
2
cos

2
θ)∆

2
φ dφ

2
]

with

∆r(r) =

(
1 −

2m

r
− m

2
B
2
)(

1 + B
2
r
2
)

,

Ω(r, θ) :=

√
1 + B2r2 − B2r cos2 θ(r − 2m − rB2m2)

Aµ =

(
0, 0, 0,

1 + mB2r cos2 θ − Ω

BΩ
∆φ

)
.

For B=0: Schwarzschild

For m=0: Bertotti-Robinson (x := cos θ)

ds
2

=
1

1 + B2r2(1 − x2)

[
−(1 + B

2
r
2
)dt

2
+

dr2

(1 + B2r2)
+

r2dx2

(1 − x2)
+ r

2
(1 − x

2
) dφ

2
]
,

Aµ =

0, 0, 0,− Br2(1 − x2)

1 + B2r2(1 − x2) +
√

1 + B2r2(1 − x2)

 .
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Bertotti-Robinson electromagnetic background

Bertotti-Robinson:

ds
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Thanks to the change of coordinates

r →
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B cos θ
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,
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Schwarzschild in Bertotti-Robinson-Bonnor-Melvin field

Thanks to the Harrison transformation (applied to the Schwarzschild-Bertotti-Robinson
seed) we can build Schwarzschild embedded in the Bertotti-Robinson-Bonnor-Melvin
(elettro)magnetic field

ds
2
= −f̄ ∆

2
φdφ

2
+

1

f̄

[
ρ
2
dt

2 − e
2γ
(

dr2

∆r
+

dx2

∆x

)]
,

with

f̄(r, x) =
−4B4r2∆x[

b(b + 2B)
(
B2mrx2 + 1

)
−
(
b2 + 2bB + 2B2

)
Ω
]2 , ρ(r, x) =

√
∆r∆x

Ω2

∆r(r) :=

(
1 −

2m

r
− m

2
B
2
)(

1 + B
2
r
2
)

, ∆x(x) := (1 − x
2
)(1 + B

2
m

2
x
2
) ,

Ω(r, x) :=

√
1 + B2r2 − B2r cos2 θ(r − 2m − rB2m2) , γ(r, x) :=

1

2
log

r4∆x

Ω4
,

and magnetic potential

Āφ(r, x) =
−2r2(b + B)∆x

2Ω
(
B2mrx2 + 1

)
+ br2(b + 2B)∆x + 2B2r

[
x2
(
B2m2r + 2m − r

)
+ r
]
+ 2

.
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Schwarzschild in Bertotti-Robinson-Bonnor-Melvin field

B = 0.1, b = 0.1 B = 0.4, b = 0.1 B = 2, b = 0.1

B = 0, b = 0 B = 0.3, b = −0.4 B = 0.5, b = −0.6

Figure: Embedding in Euclidean three-dimensional space E3 of the event horizon of the
black hole distorted by the presence of both the external Bertotti-Robinson and
Bonnor-Melvin magnetic backgrounds, for m = 1

Marco Astorino Black hole in Bertotti-Melvin magnetic field



Limit to Schwarzschild in Bonnor-Melvin universe

For B=0: Schwarzschild embedded in the Bonnor-Melvin (elettro)magnetic field

ds
2
=

[
1 +

b2r2

4
(1 − x

2
)

]2 [
−
(
1 −

2m

r

)
dt

2
+

dr2

1 − 2m
r

+
r2dx2

(1 − x2)

]
+

r2(1 − x2) dφ2[
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4 (1 − x2)

]2 ,

Aµ =

[
0, 0, 0,

2br2(1 − x2)

4 + b2r2(1 − x2)

]
.

For B=0 & m=0: Bonnor-Melvin magnetic Universe

ds
2
=
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4
(1 − x

2
)
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2
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2

,
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[
0, 0, 0,

2br2(1 − x2)

4 + b2r2(1 − x2)

]
.
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m=0: Magnetic Bertotti-Robinson-Bonnor-Melvin background

ds
2
= Λ

2
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−(1 + B

2
r
2
)dt

2
+

dr2
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r2dx2
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The general magnetic background coincides with the analytical continuation

t → iφ , φ → it , Q → i(b + B) , k → −B
2

, m → −
b2
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2
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,

A = Aµdx
µ

= −
Q

r
dt .
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dr2

k − 2m
r +

Q2

r2

+
dx2

1 − kx2
+ r

2
(1 − kx

2
)dφ

2
,

A = Aµdx
µ

= −
Q

r
dt .

Marco Astorino Black hole in Bertotti-Melvin magnetic field



m=0: Magnetic Bertotti-Robinson-Bonnor-Melvin background
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2
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Λ2
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]2 dφ
2

,
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Λ(r, x) =
−b(b + 2B) + (b2 + 2bB + 2B2)

√
1 + B2r2(1 − x2)

2B2[1 + B2r2(1 − x2)]
,

Aµ =

0, 0, 0,
2(b + B)r2(1 − x2)

−(b2 + 2bB + 2B2)r2(1 − x2) + 2
[
1 +

√
1 + B2r2(1 − x2)

]
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Limit to Schwarzschild in a gravitational external background
For b = -B: Schwarzschild black hole in a gravitational background, Aµ = [0, 0, 0, 0]

ds
2
=

(1 + B2mr cos2 θ + Ω)2

4Ω4

[
−f(r)dt

2
+

dr2

f(r)
+

r2dθ2

∆θ(θ)

]
+

4r2 sin2 θ∆θ(θ)∆
2
φ dφ2

(1 + B2mr cos2 θ + Ω)2
,

f(r) =

(
1 −

2m

r
− B

2
m

2
)

(1 + B
2
r
2
) , ∆θ(θ) = 1 + B

2
m

2
cos

2
θ ,

Ω(r, θ) =

√
1 + B2r[r + (2m + B2m2r − r) cos2 θ] , ∆φ = 1/(1 + B

2
m

2
) .

Static, type I, black hole with a “gravitational hair” and squashed event horizon

(a) m = 1, B = 0 (b) m = 1, B = 0.4 (c) m = 1, B = 0.5
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Pure gravitational background

ds
2
=

 1 +
√

1 + B2r2 sin2 θ

2
(
1 + B2r2 sin2 θ

)
2 [−(1 + B

2
r
2
)dt

2
+

dr2

1 + B2r2
+ r

2
dθ

2
]
+

4r2 sin2 θ dφ2(
1 +

√
1 + B2r2 sin2 θ

)2 .

Thanks to the change of coordinates

r →

√
4p − 4p2 + B2q2

B(2p − 1)
, θ → arccos

 Bq√
4p − 4p2 + B2q2

 , φ →
B2

2
φ ,

the background is diffeomorphic to

ds
2
= p

2
[
−Q(q)dt

2
+

dq2

Q(q)
+

dp2

P (p)

]
+

P (p)

p2
dφ

2

with
Q(q) = 1 + B

2
q
2

, P (p) = B
2
p − B

2
p
2

.

Which corresponds to the double Wick rotation

t̂ → iφ , φ̂ → it , k̂ → −B
2

, m̂ → −
B2

2
, x̂ → q , r̂ → p

of the hyperbolic Schwarzschild metric

dŝ
2
= −

(
k̂ −

2m̂

r̂

)
dt̂

2
+

dr̂2

k̂ − 2m̂
r̂

+
r̂2 dx̂2

1 − k̂x̂2
+ r̂

2
(1 − k̂x̂

2
) dφ̂

2
.
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dŝ
2
= −

(
k̂ −

2m̂

r̂

)
dt̂

2
+

dr̂2

k̂ − 2m̂
r̂

+
r̂2 dx̂2

1 − k̂x̂2
+ r̂

2
(1 − k̂x̂

2
) dφ̂

2
.

Marco Astorino Black hole in Bertotti-Melvin magnetic field



Pure gravitational background

ds
2
=

 1 +
√

1 + B2r2 sin2 θ

2
(
1 + B2r2 sin2 θ

)
2 [−(1 + B

2
r
2
)dt

2
+

dr2

1 + B2r2
+ r

2
dθ

2
]
+

4r2 sin2 θ dφ2(
1 +

√
1 + B2r2 sin2 θ

)2 .

Thanks to the change of coordinates

r →

√
4p − 4p2 + B2q2

B(2p − 1)
, θ → arccos

 Bq√
4p − 4p2 + B2q2

 , φ →
B2

2
φ ,

the background is diffeomorphic to

ds
2
= p

2
[
−Q(q)dt

2
+

dq2

Q(q)
+

dp2

P (p)

]
+

P (p)

p2
dφ

2

with
Q(q) = 1 + B

2
q
2

, P (p) = B
2
p − B

2
p
2

.

Which corresponds to the double Wick rotation

t̂ → iφ , φ̂ → it , k̂ → −B
2

, m̂ → −
B2

2
, x̂ → q , r̂ → p

of the hyperbolic Schwarzschild metric

dŝ
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Summary & notable limits

Specializations of the electrovacuum solutions presented this talk

Schwarzschild-
Bertotti-Robinson

(m,B)

type D

Schwarzschild-Bonnor-Melvin
(m, b)

type I

Schwarzschild-Bertotti-
Robinson-Bonnor-Melvin

(m,B, b)

type I

B = 0

b = 0

Bonnor-Melvin
magnetic Universe

(b)

type D

m = 0

Bertotti-Robinson
magnetic field

(B)

type D

m = 0

Bertotti-Robinson-
Bonnor-Melvin
magnetic field

(B, b)

type D
m = 0

Schwarzschild in
gravitational field

(m,B)

type Ib = −B

External grav-
itational field

(B)

type D

m = 0

B = 0
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That’s all – Thank You

That’s all

¡Thank You!

[2508.12908]

PRD 112 (2025) 10, 104077

Marco Astorino Black hole in Bertotti-Melvin magnetic field

https://arxiv.org/pdf/2508.12908.pdf


Introduction: Theory and Field Equations

Theory under consideration: General Relativity coupled with Maxwell electromag-
netism

I[gµν,Aµ] :=
1

16πG

∫
d
4
x
√

−g

[
R−

G

µ0
FµνF

µν
]

.

Field equations for the metric gµν and electromagnetic vector potential Aµ

Rµν −
R

2
gµν =

2G

µ0

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ
)

,

∂µ(
√

−gF
µν

) = 0 .

The Faraday tensor Fµν is defined from the gauge potential, Fµν := ∂µAν − ∂νAµ.

The most generic axisymmetric and stationary spacetime, containing two commut-
ing Killing vectors ∂t and ∂φ, can be written, for this theory, in the Lewis-Weyl-
Papapetrou (LWP) form as

ds
2
= −f (dt − ωdφ)

2
+ f

−1
[
ρ
2
dφ

2
+ e

2γ
(
dρ

2
+ dz

2
)]

.

All the three structure functions appearing in the metric f, ω and γ depends only
on the non-Killing coordinates (ρ, z).

A generic electromagnetic potential compatible with the spacetime symmetries, and
the circularity of the LWP metric, is given by A = At(ρ, z)dt + Aφ(ρ, z)dφ.
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Ernst Equations

Ernst (Phys. Rev. 1968) discovered that, when the Einstein field equations are
restricted to the axisymmetric and stationary LWP ansatz, they reduce to a couple
of complex vectorial differential equations

Ernst Equations

(
Re E + |Φ|2

)
∇2E =

(−→
∇E + 2 Φ

∗−→∇Φ
)
·
−→
∇E ,(

Re E + |Φ|2
)
∇2

Φ =
(−→
∇E + 2 Φ

∗−→∇Φ
)
·
−→
∇Φ .

The complex Ernst potential are defined as

Φ := At + iÃφ , E := f − |ΦΦ
∗| + ih ,

where Ãφ and h can be obtained from

−→
∇Ãφ := −fr

−1−→e φ × (
−→
∇Aφ − ω

−→
∇At) ,

−→
∇h := −f

2
r
−1−→e φ ×

−→
∇ω − 2 Im(Φ

∗−→∇Φ) .
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2
r
−1−→e φ ×

−→
∇ω − 2 Im(Φ

∗−→∇Φ) .
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Introduction: Symmetries of Ernst Equations

Ernst equations can be derived by an effective action

I(E,Φ) =

∫
dz

∫
dρ

[(−→
∇E + 2Φ∗−→∇Φ

)(−→
∇E∗ + 2Φ

−→
∇Φ∗)(

E + E∗ + 2ΦΦ∗)2 −
−→
∇Φ

−→
∇Φ∗

E + E∗ + 2ΦΦ∗

]

This action has a set of Lie point symmetries which form the SU(2, 1) group.
These symmetries can be written as a set of five independent transformation:

Ernst Equations Symmetries (Lie point)

(I) E −→ E′ = λλ
∗E , Φ −→ Φ

′
= λΦ ,

(II) E −→ E′ = E + i b , Φ −→ Φ
′
= Φ ,

(III) E −→ E′ =
E

1 + icE
, Φ −→ Φ

′
=

Φ

1 + icE
,

(IV ) E −→ E′ = E − 2β
∗
Φ − ββ

∗
, Φ −→ Φ

′
= Φ + β ,

(V ) E −→ E′ =
E

1 − 2α∗Φ − αα∗E
, Φ −→ Φ

′
=

Φ + αE
1 − 2α∗Φ − αα∗E

where b, c ∈ R and α, λ, β ∈ C.

Some of these transformation are just gauge symmetries and can be reabsorbed by
a coordinate transformation, while others actually have non-trivial physical effects.
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