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Motivation

Quasinormal Modes, Greybody Factors and the Shadow Radius
are properties of black holes that are in principle measurable.

The goal is to study how the spectrum of the black hole changes if it
is accelerating.

This was done numerically by (K. Destounis, R. D. B. Fontana and
F. C. Mena). Thus we are interested on getting analytical
expressions for the quantities above.

In this work, the focus will be on the eikonal limit and its relation
with circular null geodesics given that this black hole lacks
spherical symmetry.
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Accelerated black holes: C− Metric

The C−metric describes two causally separated black holes
accelerating away from each other.

In spherical coordinates it can be expressed as

ds2 =
1

(1− ar cos θ)2

(
−f (r)dt2 +

dr2

f (r)
+

r2dθ2

P(θ)
+ P(θ)r2 sin2 (θ)dφ2

)
,

(1)
where

f (r) =

(
1− 2M

r
+

Q2

r2

)(
1− a2r2

)
; P(θ) = 1−2aM cos θ+a2Q2 cos2 θ,

(2)
where a the acceleration parameter, Q charge and M mass.

Our observer is somewhere in between M +
√
M2 − Q2 < r < 1/a.
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Equation of Motion for a Scalar Field

The Klein Gordon equation for a massless test scalar field Ψ gives

2Ψ = 0 ⇔ 1√
−g

∂µ(
√
−ggµν∂νΨ) = 0 (3)

Under some transformations and the ansatz:

Ψ̃ = Λ−1Ψ = e−iωte imφϕ(r)

r
χ(θ), (4)

where Λ = (1− ar cos θ), the equations are separable and read:

d2ϕ(r)

dx2
+ (ω2 − Vr )ϕ(r) = 0,

d2χ(θ)

dz2
− (m2 − Vθ)χ(θ) = 0, (5)

where

dx =
dr

f (r)
, dz =

dθ

P(θ) sin θ
(6)
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Form of Potentials

The potentials are:

Vr = f (r)

(
λ

r2
− f (r)

3r2
+

f ′(r)

3r
− f ′′(r)

6

)
, (7)

Vθ = P(θ)

(
λ sin2 θ − P(θ) sin2 θ

3
+

sin θ cos θP ′(θ)

2
+

sin2 θP ′′(θ)

6

)
(8)

and λ is the separation constant.

If the metric was spherically symmetric, then:

χ(θ)e imφ → Ym
l (θ, φ);

λ → l(l + 1) + 1/3, where l is the angular momentum number.
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Boundary Conditions (QNMs)

1. Nothing comes out of the horizon:

Ψ ∼ e−iω(t+x), x → −∞ (r → r+), (9)

where r+ = M +
√
M2 − Q2 is the radius of the black hole horizon.

2. Just outgoing waves near the acceleration horizon:

Ψ ∼ e−iω(t−x), x → +∞ (r → 1/a). (10)
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Eikonal Limit and WKB QNM (Uncharged)

Usually the eikonal limit is defined as l → ∞, here we define it as
λ → ∞ ⇒

⇒ Vr (r) ≈ f (r)
λ

r2
=

λ

r2

(
1− 2M

r

)(
1− a2r2

)
(11)

In this limit, the equations of motion are equivalent for perturbations
of other spins, differing only at the next-to-leading order correction in
the QNM frequency.

By applying the WKB method we have:

ω =

√
λf (rc)

rc
− i

(
n +

1

2

)√
− r2c
2f (rc)

(
d2

dx2
f (r)

r2

)
r=rc

, (12)

where rc is the critical point of Vr and n the overtone number.
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Quasinormal Modes Solutions

V ′(r)|r=rc = 0 ⇔ −3M + rc +Ma2r2c = 0 ⇒ (13)

⇒ rc =
6M

1 +
√
1 + 12a2M 2

. (14)

The real part of ω becomes:

ℜ(ω)√
λ

=

√
1 +

√
1 + 12a2M2 + 12a2M2(−3 +

√
1 + 12a2M2)

3
√
6M

, (15)

And the imaginary part:

ℑ(ω)(
n + 1

2

) = −

√
1 +

√
1 + 12a2M2 + 12a2M2(2 + 12a2M2 − 3

√
1 + 12a2M2)

3
√
6M

.

(16)
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Separation Constant

There is no closed form expression for the separation constant λ.

J. Barragán Amado and B. Gwak, derived one perturbatively:

λ = l(l + 1) +
1

3
+

+
[1− l(l + 1)(3l2 + 3l − 1)−m2(15l2 + 15l − 11)

2(2l − 1)(2l + 3)
r2+

(
1 +

Q4

r4+

)
−

l(l + 1)(3l2 + 3l − 2) + 3m2(9l2 + 9l − 7)

3(2l − 1)(2l + 3)
Q2

]
a2 + O(a3). (17)

Francisco Silva , Filipe Moura Spectroscopy of Accelerating Black Holes 10 / 21



Separation Constant

There is no closed form expression for the separation constant λ.

J. Barragán Amado and B. Gwak, derived one perturbatively:

λ = l(l + 1) +
1

3
+

+
[1− l(l + 1)(3l2 + 3l − 1)−m2(15l2 + 15l − 11)

2(2l − 1)(2l + 3)
r2+

(
1 +

Q4

r4+

)
−

l(l + 1)(3l2 + 3l − 2) + 3m2(9l2 + 9l − 7)

3(2l − 1)(2l + 3)
Q2

]
a2 + O(a3). (17)

Francisco Silva , Filipe Moura Spectroscopy of Accelerating Black Holes 10 / 21



Separation Constant

There is no closed form expression for the separation constant λ.

J. Barragán Amado and B. Gwak, derived one perturbatively:

λ = l(l + 1) +
1

3
+

+
[1− l(l + 1)(3l2 + 3l − 1)−m2(15l2 + 15l − 11)

2(2l − 1)(2l + 3)
r2+

(
1 +

Q4

r4+

)
−

l(l + 1)(3l2 + 3l − 2) + 3m2(9l2 + 9l − 7)

3(2l − 1)(2l + 3)
Q2

]
a2 + O(a3). (17)

Francisco Silva , Filipe Moura Spectroscopy of Accelerating Black Holes 10 / 21



Relation with Circular Null Geodesics

For spherically symmetric black holes we have (V. Cardoso,
A. S. Miranda, E. Berti, H. Witek and V. T. Zanchi) in the eikonal
limit

ω =

(
l +

1

2

)
Ωc − i

(
n +

1

2

)
Λ, (18)

where Ωc is the frequency of unstable circular null geodesics and Λ is
the Lyapunov exponent of the corresponding motion.

In this black hole, it is not straightforward that this still holds.
Though, with the geodesic equations of motion we can prove that

Ωc =

√
( dθdη )

2/P(θ) + (dφdη )
2P(θ) sin2 θ

dt
dη

=

√
f (rc)

rc
(19)

Thus ℜ(ω) =
√
λΩc , and identically for the Lyaponouv exponent.
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Shadow Radius

To define the shadow of a black hole, imagine that the universe is
filled with light sources in all directions except for the region directly
between the observer and the black hole.

The radius rc corresponds to an unstable circular geodesics for
light, therefore light rays that start slightly inside this orbit will
inevitably be pulled into the black hole, while those slightly outside
will scatter away to infinity.

Thus the radius of the unstable null circular geodesic determines the
radius of the shadow of the black hole, however rc is just a
coordinate, to have the physical distance we need to multiply it by
the metric factor.Then we have:

R =
rc√
f (rc)

=
1

Ωc
=

√
λ

ℜ(ω)
(20)
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Black holes and Black Bodies

The spectrum of a black hole is not the same as the spectrum of a
black body.

This is due to the gravitational attraction that the black hole exerts
on its radiation, leading to the absorption of the latter.

A greybody factor Γ(ω) is introduced: it is interpreted as the
probability of radiation escaping the black hole.

The number of particles emitted by a BH per unit time per unit
frequency becomes:

dNi

dtdωi
=

1

2π

∑
λ,m

giΓ
s
λ,m(ω)

eω/T ± 1
, (21)

where g is the degeneracy of the particle species.

Francisco Silva , Filipe Moura Spectroscopy of Accelerating Black Holes 13 / 21



Black holes and Black Bodies

The spectrum of a black hole is not the same as the spectrum of a
black body.

This is due to the gravitational attraction that the black hole exerts
on its radiation, leading to the absorption of the latter.

A greybody factor Γ(ω) is introduced: it is interpreted as the
probability of radiation escaping the black hole.

The number of particles emitted by a BH per unit time per unit
frequency becomes:

dNi

dtdωi
=

1

2π

∑
λ,m

giΓ
s
λ,m(ω)

eω/T ± 1
, (21)

where g is the degeneracy of the particle species.

Francisco Silva , Filipe Moura Spectroscopy of Accelerating Black Holes 13 / 21



Black holes and Black Bodies

The spectrum of a black hole is not the same as the spectrum of a
black body.

This is due to the gravitational attraction that the black hole exerts
on its radiation, leading to the absorption of the latter.

A greybody factor Γ(ω) is introduced: it is interpreted as the
probability of radiation escaping the black hole.

The number of particles emitted by a BH per unit time per unit
frequency becomes:

dNi

dtdωi
=

1

2π

∑
λ,m

giΓ
s
λ,m(ω)

eω/T ± 1
, (21)

where g is the degeneracy of the particle species.

Francisco Silva , Filipe Moura Spectroscopy of Accelerating Black Holes 13 / 21



Black holes and Black Bodies

The spectrum of a black hole is not the same as the spectrum of a
black body.

This is due to the gravitational attraction that the black hole exerts
on its radiation, leading to the absorption of the latter.

A greybody factor Γ(ω) is introduced: it is interpreted as the
probability of radiation escaping the black hole.

The number of particles emitted by a BH per unit time per unit
frequency becomes:

dNi

dtdωi
=

1

2π

∑
λ,m

giΓ
s
λ,m(ω)

eω/T ± 1
, (21)

where g is the degeneracy of the particle species.

Francisco Silva , Filipe Moura Spectroscopy of Accelerating Black Holes 13 / 21



Greybody Factors

These are obtained by solving the scattering problem of fields in the
background geometry. The boundary conditions are:

1. Near the horizon some radiation is absorbed:

ϕ = Te−iωx , x → −∞ (r → r+), (22)

where T is the transmission coefficient and r+ is the radius of the
black hole horizon.

2. At the acceleration horizon some waves are reflected and others are
outgoing:

ϕ = e−iωx + Re iωx , x → +∞ (r → 1/a), (23)

where R is the reflection coefficient.

Conservation of energy holds:

|T |2 + |R|2 = 1 (24)
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Greybody Factors Solution

Solving the scattering problem gives

Γ(ω) = |T |2 = 1

1 + e2πiK
(25)

where K is defined as

K = −i
V (rc)− ω2√

−2
(
d2V (r)
dx2

)
r=rc

= −i
ω2 −ℜ(ωn=0)

2

4ℜ(ωn=0)ℑ(ωn=0)
. (26)

The solution is:

Γ(ω) =
(
exp

[(√
λ− 54M2ω2

√
λ(2−

√
1+12a2M2)(1−12a2M2+

√
1+12a2M2)

)
π

(1+12a2M2)1/4

]
+ 1

)−1
.

(27)
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Generalization to Charged Accelerating Black Hole

To find the maximum of the potential, we have to solve the equation:

V ′(rc) = 0

⇔ 2Q2 − 3Mrc + (1− a2Q2)r2c + a2Mr3c = 0. (28)

The equation has 3 real root solutions, so we can write the solution in
terms of trigonometric functions. The one that corresponds to the
maximum is:

rc = −1+a2Q2

3a2M
+

2
√

1+a4Q4+a2(9M2−2Q2)

3a2M
cos

(
1
3 arccos

[
−2+a2(−27M2(1+a2Q2)+2Q2(3−3a2Q2+a4Q4))

2(1+a4Q4+a2(9M2−2Q2))3/2

])
(29)
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QNM and Greybody Factors for Charged Black hole

Given the WKB solution the QNMs are:

ℜ(ω) =
√
λ

√
(Q2 − 2Mrc + r2c )(1− a2r2c )

r2c
, (30)

ℑ(ω)

n+ 1
2

= −
√

(Q2−2Mrc+r2c )(1−a2r2c )(−10Q2+12Mrc+3(−1+a2Q2)r2c−2a2Mr3c )

r3c
(31)

The greybody factor is

Γ(ω) =

(
exp

[(√
λ− ω2r4c√

λ(Q2−2Mrc+r2c )(1−a2r2c )

)
πrc√

−10Q2+12Mrc+3(−1+a2Q2)r2c−2a2Mr3c

]
+ 1

)−1

(32)
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Conclusions and Future Work

Study the Highly Damped Asymptotic Limit (it turns out that it is
very similar to De Sitter Black Hole);

Obtain QNMs and Greybody factors for a black hole with rotation;

Examine the stability of the C−metric;

Test the Zero Love Hypothesis.
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Appendix A - Teukolsky equation (Uncharged Black Hole)

Using the Newman Penrose formalism gives us the master equation

(r2f (r))−s d

dr

(
(r2f (r))s+1 dR(r)

dr

)
+ V (r)R(r) = 0, (33)

with

V (r) = −2ra2(r −M)(1 + s)(1 + 2s) +
r2ω2

f (r)
−

− 2isωr

[
M

r − 2M
− 1

1− a2r2

]
− B (34)

where B is a separation constant.

Briefly, we’ll see that B is related to λ.
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Change of Variables

By performing the following transformation

Φ(r) = r(r2f (r))s/2R(r) and x =

∫
dr

f (r)
, (35)

we obtain

d2Φ(r)

dx2
+

(
ω2 − Vr (r)

)
Φ(r) = 0. (36)

The potential is given by

Vr =
(r − 2M)(1− a2r2)(2M + rs) + (M − r + a2Mr2)2s2

r4
+

+
(r − 2M)(1− a2r2)

r3
B − 2i(r +M(−3 + a2r2))sω

r2
. (37)
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Take the Eikonal Limit B → ∞

By now taking the eikonal limit B → ∞, which means saving terms
proportional in B and ω2, we get:

Vr (r) =

(
1− 2M

r

)
(1− a2r2)

B

r2
= B

f (r)

r2
, (38)

which is identical to the eikonal limit in applied to the scalar wave
equation.

Thus the limit is the same for different spin perturbations and B = λ
in this approximation.
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