

Spectroscopy of Accelerating Black Holes

Francisco Silva ¹ Filipe Moura ²

¹University of Lisbon - Faculty of Sciences (FCUL)

²University Institute of Lisbon - ISCTE

Contents

- 1 Motivation
- 2 Accelerated Black Holes
- 3 Eikonal Limit
- 4 Greybody Factors
- 5 Conclusion and Future Work
- 6 Appendix

Motivation

- **Quasinormal Modes, Greybody Factors and the Shadow Radius** are properties of black holes that are in principle **measurable**.

- **Quasinormal Modes, Greybody Factors** and the **Shadow Radius** are properties of black holes that are in principle **measurable**.
- The goal is to study how the **spectrum** of the black hole changes if it is **accelerating**.

- **Quasinormal Modes, Greybody Factors** and the **Shadow Radius** are properties of black holes that are in principle **measurable**.
- The goal is to study how the **spectrum** of the black hole changes if it is **accelerating**.
- This was done numerically by (K. Destounis, R. D. B. Fontana and F. C. Mena). Thus we are interested on getting **analytical expressions** for the quantities above.

- **Quasinormal Modes, Greybody Factors** and the **Shadow Radius** are properties of black holes that are in principle **measurable**.
- The goal is to study how the **spectrum** of the black hole changes if it is **accelerating**.
- This was done numerically by (K. Destounis, R. D. B. Fontana and F. C. Mena). Thus we are interested on getting **analytical expressions** for the quantities above.
- In this work, the focus will be on the **eikonal limit** and its relation with **circular null geodesics** given that this black hole **lacks spherical symmetry**.

Accelerated black holes: C – Metric

- The C –metric describes two causally separated black holes accelerating away from each other.

Accelerated black holes: C – Metric

- The C –metric describes two causally separated black holes accelerating away from each other.
- In spherical coordinates it can be expressed as

$$ds^2 = \frac{1}{(1 - ar \cos \theta)^2} \left(-f(r)dt^2 + \frac{dr^2}{f(r)} + \frac{r^2 d\theta^2}{P(\theta)} + P(\theta)r^2 \sin^2(\theta)d\varphi^2 \right), \quad (1)$$

Accelerated black holes: C – Metric

- The C –metric describes two causally separated black holes accelerating away from each other.
- In spherical coordinates it can be expressed as

$$ds^2 = \frac{1}{(1 - ar \cos \theta)^2} \left(-f(r)dt^2 + \frac{dr^2}{f(r)} + \frac{r^2 d\theta^2}{P(\theta)} + P(\theta)r^2 \sin^2(\theta)d\varphi^2 \right), \quad (1)$$

where

$$f(r) = \left(1 - \frac{2M}{r} + \frac{Q^2}{r^2} \right) (1 - a^2 r^2); \quad P(\theta) = 1 - 2aM \cos \theta + a^2 Q^2 \cos^2 \theta, \quad (2)$$

where a the acceleration parameter, Q charge and M mass.

Accelerated black holes: C – Metric

- The C –metric describes two causally separated black holes accelerating away from each other.
- In spherical coordinates it can be expressed as

$$ds^2 = \frac{1}{(1 - ar \cos \theta)^2} \left(-f(r)dt^2 + \frac{dr^2}{f(r)} + \frac{r^2 d\theta^2}{P(\theta)} + P(\theta)r^2 \sin^2(\theta)d\varphi^2 \right), \quad (1)$$

where

$$f(r) = \left(1 - \frac{2M}{r} + \frac{Q^2}{r^2} \right) (1 - a^2 r^2); \quad P(\theta) = 1 - 2aM \cos \theta + a^2 Q^2 \cos^2 \theta, \quad (2)$$

where a the acceleration parameter, Q charge and M mass.

- Our observer is somewhere in between $M + \sqrt{M^2 - Q^2} < r < 1/a$.

Equation of Motion for a Scalar Field

The Klein Gordon equation for a massless test scalar field Ψ gives

$$\square\Psi = 0 \Leftrightarrow \frac{1}{\sqrt{-g}}\partial_\mu(\sqrt{-g}g^{\mu\nu}\partial_\nu\Psi) = 0 \quad (3)$$

Equation of Motion for a Scalar Field

The Klein Gordon equation for a massless test scalar field Ψ gives

$$\square\Psi = 0 \Leftrightarrow \frac{1}{\sqrt{-g}}\partial_\mu(\sqrt{-g}g^{\mu\nu}\partial_\nu\Psi) = 0 \quad (3)$$

Under some transformations and the ansatz:

$$\tilde{\Psi} = \Lambda^{-1}\Psi = e^{-i\omega t}e^{im\varphi}\frac{\phi(r)}{r}\chi(\theta), \quad (4)$$

where $\Lambda = (1 - ar\cos\theta)$, the equations are separable and read:

Equation of Motion for a Scalar Field

The Klein Gordon equation for a massless test scalar field Ψ gives

$$\square\Psi = 0 \Leftrightarrow \frac{1}{\sqrt{-g}}\partial_\mu(\sqrt{-g}g^{\mu\nu}\partial_\nu\Psi) = 0 \quad (3)$$

Under some transformations and the ansatz:

$$\tilde{\Psi} = \Lambda^{-1}\Psi = e^{-i\omega t}e^{im\varphi}\frac{\phi(r)}{r}\chi(\theta), \quad (4)$$

where $\Lambda = (1 - ar\cos\theta)$, the equations are separable and read:

$$\frac{d^2\phi(r)}{dx^2} + (\omega^2 - V_r)\phi(r) = 0, \quad \frac{d^2\chi(\theta)}{dz^2} - (m^2 - V_\theta)\chi(\theta) = 0, \quad (5)$$

Equation of Motion for a Scalar Field

The Klein Gordon equation for a massless test scalar field Ψ gives

$$\square\Psi = 0 \Leftrightarrow \frac{1}{\sqrt{-g}}\partial_\mu(\sqrt{-g}g^{\mu\nu}\partial_\nu\Psi) = 0 \quad (3)$$

Under some transformations and the ansatz:

$$\tilde{\Psi} = \Lambda^{-1}\Psi = e^{-i\omega t}e^{im\varphi}\frac{\phi(r)}{r}\chi(\theta), \quad (4)$$

where $\Lambda = (1 - ar\cos\theta)$, the equations are separable and read:

$$\frac{d^2\phi(r)}{dx^2} + (\omega^2 - V_r)\phi(r) = 0, \quad \frac{d^2\chi(\theta)}{dz^2} - (m^2 - V_\theta)\chi(\theta) = 0, \quad (5)$$

where

$$dx = \frac{dr}{f(r)}, \quad dz = \frac{d\theta}{P(\theta)\sin\theta} \quad (6)$$

Form of Potentials

- The potentials are:

$$V_r = f(r) \left(\frac{\lambda}{r^2} - \frac{f(r)}{3r^2} + \frac{f'(r)}{3r} - \frac{f''(r)}{6} \right), \quad (7)$$

Form of Potentials

- The potentials are:

$$V_r = f(r) \left(\frac{\lambda}{r^2} - \frac{f(r)}{3r^2} + \frac{f'(r)}{3r} - \frac{f''(r)}{6} \right), \quad (7)$$

$$V_\theta = P(\theta) \left(\lambda \sin^2 \theta - \frac{P(\theta) \sin^2 \theta}{3} + \frac{\sin \theta \cos \theta P'(\theta)}{2} + \frac{\sin^2 \theta P''(\theta)}{6} \right) \quad (8)$$

Form of Potentials

- The potentials are:

$$V_r = f(r) \left(\frac{\lambda}{r^2} - \frac{f(r)}{3r^2} + \frac{f'(r)}{3r} - \frac{f''(r)}{6} \right), \quad (7)$$

$$V_\theta = P(\theta) \left(\lambda \sin^2 \theta - \frac{P(\theta) \sin^2 \theta}{3} + \frac{\sin \theta \cos \theta P'(\theta)}{2} + \frac{\sin^2 \theta P''(\theta)}{6} \right) \quad (8)$$

and λ is the separation constant.

Form of Potentials

- The potentials are:

$$V_r = f(r) \left(\frac{\lambda}{r^2} - \frac{f(r)}{3r^2} + \frac{f'(r)}{3r} - \frac{f''(r)}{6} \right), \quad (7)$$

$$V_\theta = P(\theta) \left(\lambda \sin^2 \theta - \frac{P(\theta) \sin^2 \theta}{3} + \frac{\sin \theta \cos \theta P'(\theta)}{2} + \frac{\sin^2 \theta P''(\theta)}{6} \right) \quad (8)$$

and λ is the separation constant.

If the metric was spherically symmetric, then:

- $\chi(\theta) e^{im\varphi} \rightarrow Y_l^m(\theta, \varphi);$

Form of Potentials

- The potentials are:

$$V_r = f(r) \left(\frac{\lambda}{r^2} - \frac{f(r)}{3r^2} + \frac{f'(r)}{3r} - \frac{f''(r)}{6} \right), \quad (7)$$

$$V_\theta = P(\theta) \left(\lambda \sin^2 \theta - \frac{P(\theta) \sin^2 \theta}{3} + \frac{\sin \theta \cos \theta P'(\theta)}{2} + \frac{\sin^2 \theta P''(\theta)}{6} \right) \quad (8)$$

and λ is the separation constant.

If the metric was spherically symmetric, then:

- $\chi(\theta) e^{im\varphi} \rightarrow Y_l^m(\theta, \varphi);$
- $\lambda \rightarrow l(l+1) + 1/3$, where l is the angular momentum number.

Boundary Conditions (QNMs)

- 1 Nothing comes out of the horizon:

$$\Psi \sim e^{-i\omega(t+x)}, \quad x \rightarrow -\infty \quad (r \rightarrow r_+), \quad (9)$$

where $r_+ = M + \sqrt{M^2 - Q^2}$ is the radius of the black hole horizon.

Boundary Conditions (QNMs)

- 1 Nothing comes out of the horizon:

$$\Psi \sim e^{-i\omega(t+x)}, \quad x \rightarrow -\infty \quad (r \rightarrow r_+), \quad (9)$$

where $r_+ = M + \sqrt{M^2 - Q^2}$ is the radius of the black hole horizon.

- 2 Just outgoing waves near the acceleration horizon:

$$\Psi \sim e^{-i\omega(t-x)}, \quad x \rightarrow +\infty \quad (r \rightarrow 1/a). \quad (10)$$

Eikonal Limit and WKB QNM (Uncharged)

- Usually the eikonal limit is defined as $l \rightarrow \infty$, here we define it as $\lambda \rightarrow \infty \Rightarrow$

Eikonal Limit and WKB QNM (Uncharged)

- Usually the eikonal limit is defined as $l \rightarrow \infty$, here we define it as $\lambda \rightarrow \infty \Rightarrow$

$$\Rightarrow V_r(r) \approx f(r) \frac{\lambda}{r^2} = \frac{\lambda}{r^2} \left(1 - \frac{2M}{r}\right) (1 - a^2 r^2) \quad (11)$$

Eikonal Limit and WKB QNM (Uncharged)

- Usually the eikonal limit is defined as $l \rightarrow \infty$, here we define it as $\lambda \rightarrow \infty \Rightarrow$

$$\Rightarrow V_r(r) \approx f(r) \frac{\lambda}{r^2} = \frac{\lambda}{r^2} \left(1 - \frac{2M}{r}\right) (1 - a^2 r^2) \quad (11)$$

- In this limit, the equations of motion are equivalent for perturbations of other spins, differing only at the next-to-leading order correction in the QNM frequency.

Eikonal Limit and WKB QNM (Uncharged)

- Usually the eikonal limit is defined as $l \rightarrow \infty$, here we define it as $\lambda \rightarrow \infty \Rightarrow$

$$\Rightarrow V_r(r) \approx f(r) \frac{\lambda}{r^2} = \frac{\lambda}{r^2} \left(1 - \frac{2M}{r}\right) (1 - a^2 r^2) \quad (11)$$

- In this limit, the equations of motion are equivalent for perturbations of other spins, differing only at the next-to-leading order correction in the QNM frequency.
- By applying the WKB method we have:

$$\omega = \frac{\sqrt{\lambda f(r_c)}}{r_c} - i \left(n + \frac{1}{2}\right) \sqrt{-\frac{r_c^2}{2f(r_c)} \left(\frac{d^2}{dx^2} \frac{f(r)}{r^2}\right)_{r=r_c}}, \quad (12)$$

where r_c is the critical point of V_r and n the overtone number.

Quasinormal Modes Solutions

$$V'(r)|_{r=r_c} = 0 \Leftrightarrow -3M + r_c + Ma^2 r_c^2 = 0 \Rightarrow \quad (13)$$

Quasinormal Modes Solutions

$$V'(r)|_{r=r_c} = 0 \Leftrightarrow -3M + r_c + Ma^2 r_c^2 = 0 \Rightarrow \quad (13)$$

$$\Rightarrow r_c = \frac{6M}{1 + \sqrt{1 + 12a^2M^2}}. \quad (14)$$

Quasinormal Modes Solutions

$$V'(r)|_{r=r_c} = 0 \Leftrightarrow -3M + r_c + Ma^2 r_c^2 = 0 \Rightarrow \quad (13)$$

$$\Rightarrow r_c = \frac{6M}{1 + \sqrt{1 + 12a^2M^2}}. \quad (14)$$

The real part of ω becomes:

$$\frac{\Re(\omega)}{\sqrt{\lambda}} = \frac{\sqrt{1 + \sqrt{1 + 12a^2M^2} + 12a^2M^2(-3 + \sqrt{1 + 12a^2M^2})}}{3\sqrt{6}M}, \quad (15)$$

Quasinormal Modes Solutions

$$V'(r)|_{r=r_c} = 0 \Leftrightarrow -3M + r_c + Ma^2 r_c^2 = 0 \Rightarrow \quad (13)$$

$$\Rightarrow r_c = \frac{6M}{1 + \sqrt{1 + 12a^2M^2}}. \quad (14)$$

The real part of ω becomes:

$$\frac{\Re(\omega)}{\sqrt{\lambda}} = \frac{\sqrt{1 + \sqrt{1 + 12a^2M^2} + 12a^2M^2(-3 + \sqrt{1 + 12a^2M^2})}}{3\sqrt{6}M}, \quad (15)$$

And the imaginary part:

$$\frac{\Im(\omega)}{(n + \frac{1}{2})} = -\frac{\sqrt{1 + \sqrt{1 + 12a^2M^2} + 12a^2M^2(2 + 12a^2M^2 - 3\sqrt{1 + 12a^2M^2})}}{3\sqrt{6}M} \quad (16)$$

Separation Constant

- There is no closed form expression for the separation constant λ .

Separation Constant

- There is no closed form expression for the separation constant λ .
- J. Barragán Amado and B. Gwak, derived one perturbatively:

Separation Constant

- There is no closed form expression for the separation constant λ .
- J. Barragán Amado and B. Gwak, derived one perturbatively:

$$\begin{aligned}\lambda = & I(I+1) + \frac{1}{3} + \\ & + \left[\frac{1 - I(I+1)(3I^2 + 3I - 1) - m^2(15I^2 + 15I - 11)}{2(2I-1)(2I+3)} r_+^2 \left(1 + \frac{Q^4}{r_+^4} \right) - \right. \\ & \left. \frac{I(I+1)(3I^2 + 3I - 2) + 3m^2(9I^2 + 9I - 7)}{3(2I-1)(2I+3)} Q^2 \right] a^2 + O(a^3). \quad (17)\end{aligned}$$

Relation with Circular Null Geodesics

- For spherically symmetric black holes we have (V. Cardoso, A. S. Miranda, E. Berti, H. Witek and V. T. Zanchi) in the eikonal limit

$$\omega = \left(I + \frac{1}{2} \right) \Omega_c - i \left(n + \frac{1}{2} \right) \Lambda, \quad (18)$$

where Ω_c is the frequency of unstable circular null geodesics and Λ is the Lyapunov exponent of the corresponding motion.

Relation with Circular Null Geodesics

- For spherically symmetric black holes we have (V. Cardoso, A. S. Miranda, E. Berti, H. Witek and V. T. Zanchi) in the eikonal limit

$$\omega = \left(I + \frac{1}{2} \right) \Omega_c - i \left(n + \frac{1}{2} \right) \Lambda, \quad (18)$$

where Ω_c is the frequency of unstable circular null geodesics and Λ is the Lyapunov exponent of the corresponding motion.

- In this black hole, it is not straightforward that this still holds. Though, with the geodesic equations of motion we can prove that

$$\Omega_c = \frac{\sqrt{\left(\frac{d\theta}{d\eta}\right)^2/P(\theta) + \left(\frac{d\varphi}{d\eta}\right)^2 P(\theta) \sin^2 \theta}}{\frac{dt}{d\eta}} = \frac{\sqrt{f(r_c)}}{r_c} \quad (19)$$

Relation with Circular Null Geodesics

- For spherically symmetric black holes we have (V. Cardoso, A. S. Miranda, E. Berti, H. Witek and V. T. Zanchi) in the eikonal limit

$$\omega = \left(I + \frac{1}{2} \right) \Omega_c - i \left(n + \frac{1}{2} \right) \Lambda, \quad (18)$$

where Ω_c is the frequency of unstable circular null geodesics and Λ is the Lyapunov exponent of the corresponding motion.

- In this black hole, it is not straightforward that this still holds. Though, with the geodesic equations of motion we can prove that

$$\Omega_c = \frac{\sqrt{\left(\frac{d\theta}{d\eta}\right)^2/P(\theta) + \left(\frac{d\varphi}{d\eta}\right)^2 P(\theta) \sin^2 \theta}}{\frac{dt}{d\eta}} = \frac{\sqrt{f(r_c)}}{r_c} \quad (19)$$

Thus $\Re(\omega) = \sqrt{\lambda} \Omega_c$, and identically for the Lyapunov exponent.

Shadow Radius

- To define the **shadow** of a black hole, imagine that the universe is filled with light sources in all directions except for the region directly between the observer and the black hole.

Shadow Radius

- To define the **shadow** of a black hole, imagine that the universe is filled with light sources in all directions except for the region directly between the observer and the black hole.
- The radius r_c corresponds to an **unstable circular geodesics** for light, therefore light rays that start slightly inside this orbit will inevitably be **pulled into** the black hole, while those slightly outside will **scatter away** to infinity.

Shadow Radius

- To define the **shadow** of a black hole, imagine that the universe is filled with light sources in all directions except for the region directly between the observer and the black hole.
- The radius r_c corresponds to an **unstable circular geodesics** for light, therefore light rays that start slightly inside this orbit will inevitably be **pulled into** the black hole, while those slightly outside will **scatter away** to infinity.
- Thus the radius of the unstable null circular geodesic determines the radius of the shadow of the black hole, however r_c is just a **coordinate**, to have the **physical distance** we need to multiply it by the metric factor.

Shadow Radius

- To define the **shadow** of a black hole, imagine that the universe is filled with light sources in all directions except for the region directly between the observer and the black hole.
- The radius r_c corresponds to an **unstable circular geodesics** for light, therefore light rays that start slightly inside this orbit will inevitably be **pulled into** the black hole, while those slightly outside will **scatter away** to infinity.
- Thus the radius of the unstable null circular geodesic determines the radius of the shadow of the black hole, however r_c is just a **coordinate**, to have the **physical distance** we need to multiply it by the metric factor. Then we have:

- To define the **shadow** of a black hole, imagine that the universe is filled with light sources in all directions except for the region directly between the observer and the black hole.
- The radius r_c corresponds to an **unstable circular geodesics** for light, therefore light rays that start slightly inside this orbit will inevitably be **pulled into** the black hole, while those slightly outside will **scatter away** to infinity.
- Thus the radius of the unstable null circular geodesic determines the radius of the shadow of the black hole, however r_c is just a **coordinate**, to have the **physical distance** we need to multiply it by the metric factor. Then we have:

$$\mathcal{R} = \frac{r_c}{\sqrt{f(r_c)}}$$

- To define the **shadow** of a black hole, imagine that the universe is filled with light sources in all directions except for the region directly between the observer and the black hole.
- The radius r_c corresponds to an **unstable circular geodesics** for light, therefore light rays that start slightly inside this orbit will inevitably be **pulled into** the black hole, while those slightly outside will **scatter away** to infinity.
- Thus the radius of the unstable null circular geodesic determines the radius of the shadow of the black hole, however r_c is just a **coordinate**, to have the **physical distance** we need to multiply it by the metric factor. Then we have:

$$\mathcal{R} = \frac{r_c}{\sqrt{f(r_c)}} = \frac{1}{\Omega_c}$$

Shadow Radius

- To define the **shadow** of a black hole, imagine that the universe is filled with light sources in all directions except for the region directly between the observer and the black hole.
- The radius r_c corresponds to an **unstable circular geodesics** for light, therefore light rays that start slightly inside this orbit will inevitably be **pulled into** the black hole, while those slightly outside will **scatter away** to infinity.
- Thus the radius of the unstable null circular geodesic determines the radius of the shadow of the black hole, however r_c is just a **coordinate**, to have the **physical distance** we need to multiply it by the metric factor. Then we have:

$$\mathcal{R} = \frac{r_c}{\sqrt{f(r_c)}} = \frac{1}{\Omega_c} = \frac{\sqrt{\lambda}}{\mathfrak{R}(\omega)} \quad (20)$$

Black holes and Black Bodies

- The **spectrum** of a black hole is not the same as the spectrum of a black body.

Black holes and Black Bodies

- The **spectrum** of a black hole is not the same as the spectrum of a black body.
- This is due to the gravitational attraction that the black hole exerts on its radiation, leading to the absorption of the latter.

Black holes and Black Bodies

- The **spectrum** of a black hole is not the same as the spectrum of a black body.
- This is due to the gravitational attraction that the black hole exerts on its radiation, leading to the absorption of the latter.
- A **greybody factor** $\Gamma(\omega)$ is introduced: it is interpreted as the probability of radiation escaping the black hole.

Black holes and Black Bodies

- The **spectrum** of a black hole is not the same as the spectrum of a black body.
- This is due to the gravitational attraction that the black hole exerts on its radiation, leading to the absorption of the latter.
- A **greybody factor** $\Gamma(\omega)$ is introduced: it is interpreted as the probability of radiation escaping the black hole.
- The number of particles emitted by a BH per unit time per unit frequency becomes:

$$\frac{dN_i}{dtd\omega_i} = \frac{1}{2\pi} \sum_{\lambda,m} \frac{g_i \Gamma_{\lambda,m}^s(\omega)}{e^{\omega/T} \pm 1}, \quad (21)$$

where g is the degeneracy of the particle species.

Greybody Factors

These are obtained by solving the scattering problem of fields in the background geometry. The boundary conditions are:

- 1 Near the horizon some radiation is **absorbed**:

$$\phi = T e^{-i\omega x}, \quad x \rightarrow -\infty \quad (r \rightarrow r_+), \quad (22)$$

where T is the **transmission coefficient** and r_+ is the radius of the black hole horizon.

Greybody Factors

These are obtained by solving the scattering problem of fields in the background geometry. The boundary conditions are:

- 1 Near the horizon some radiation is **absorbed**:

$$\phi = Te^{-i\omega x}, \quad x \rightarrow -\infty \quad (r \rightarrow r_+), \quad (22)$$

where T is the **transmission coefficient** and r_+ is the radius of the black hole horizon.

- 2 At the acceleration horizon some waves are **reflected** and others are **outgoing**:

$$\phi = e^{-i\omega x} + Re^{i\omega x}, \quad x \rightarrow +\infty \quad (r \rightarrow 1/a), \quad (23)$$

where R is the **reflection coefficient**.

Greybody Factors

These are obtained by solving the scattering problem of fields in the background geometry. The boundary conditions are:

- 1 Near the horizon some radiation is **absorbed**:

$$\phi = Te^{-i\omega x}, \quad x \rightarrow -\infty \quad (r \rightarrow r_+), \quad (22)$$

where T is the **transmission coefficient** and r_+ is the radius of the black hole horizon.

- 2 At the acceleration horizon some waves are **reflected** and others are **outgoing**:

$$\phi = e^{-i\omega x} + Re^{i\omega x}, \quad x \rightarrow +\infty \quad (r \rightarrow 1/a), \quad (23)$$

where R is the **reflection coefficient**.

Conservation of energy holds:

$$|T|^2 + |R|^2 = 1 \quad (24)$$

Greybody Factors Solution

Solving the scattering problem gives

$$\Gamma(\omega) = |T|^2 = \frac{1}{1 + e^{2\pi i K}} \quad (25)$$

Greybody Factors Solution

Solving the scattering problem gives

$$\Gamma(\omega) = |T|^2 = \frac{1}{1 + e^{2\pi i K}} \quad (25)$$

where K is defined as

$$K = -i \frac{V(r_c) - \omega^2}{\sqrt{-2 \left(\frac{d^2 V(r)}{dx^2} \right)_{r=r_c}}} = -i \frac{\omega^2 - \Re(\omega_{n=0})^2}{4\Re(\omega_{n=0})\Im(\omega_{n=0})}. \quad (26)$$

Greybody Factors Solution

Solving the scattering problem gives

$$\Gamma(\omega) = |T|^2 = \frac{1}{1 + e^{2\pi i K}} \quad (25)$$

where K is defined as

$$K = -i \frac{V(r_c) - \omega^2}{\sqrt{-2 \left(\frac{d^2 V(r)}{dx^2} \right)_{r=r_c}}} = -i \frac{\omega^2 - \Re(\omega_{n=0})^2}{4\Re(\omega_{n=0})\Im(\omega_{n=0})}. \quad (26)$$

The solution is:

$$\Gamma(\omega) = \left(\exp \left[\left(\sqrt{\lambda} - \frac{54M^2\omega^2}{\sqrt{\lambda}(2 - \sqrt{1 + 12a^2M^2})(1 - 12a^2M^2 + \sqrt{1 + 12a^2M^2})} \right) \frac{\pi}{(1 + 12a^2M^2)^{1/4}} \right] + 1 \right)^{-1}. \quad (27)$$

Generalization to Charged Accelerating Black Hole

- To find the maximum of the potential, we have to solve the equation:

$$V'(r_c) = 0$$

Generalization to Charged Accelerating Black Hole

- To find the maximum of the potential, we have to solve the equation:

$$V'(r_c) = 0 \Leftrightarrow 2Q^2 - 3Mr_c + (1 - a^2Q^2)r_c^2 + a^2Mr_c^3 = 0. \quad (28)$$

Generalization to Charged Accelerating Black Hole

- To find the maximum of the potential, we have to solve the equation:

$$V'(r_c) = 0 \Leftrightarrow 2Q^2 - 3Mr_c + (1 - a^2Q^2)r_c^2 + a^2Mr_c^3 = 0. \quad (28)$$

- The equation has 3 real root solutions, so we can write the solution in terms of trigonometric functions. The one that corresponds to the maximum is:

Generalization to Charged Accelerating Black Hole

- To find the maximum of the potential, we have to solve the equation:

$$V'(r_c) = 0 \Leftrightarrow 2Q^2 - 3Mr_c + (1 - a^2Q^2)r_c^2 + a^2Mr_c^3 = 0. \quad (28)$$

- The equation has 3 real root solutions, so we can write the solution in terms of trigonometric functions. The one that corresponds to the maximum is:

$$r_c = \frac{-1+a^2Q^2}{3a^2M} + \frac{2\sqrt{1+a^4Q^4+a^2(9M^2-2Q^2)}}{3a^2M} \cos \left(\frac{1}{3} \arccos \left[\frac{-2+a^2(-27M^2(1+a^2Q^2)+2Q^2(3-3a^2Q^2+a^4Q^4))}{2(1+a^4Q^4+a^2(9M^2-2Q^2))^{3/2}} \right] \right) \quad (29)$$

QNM and Greybody Factors for Charged Black hole

- Given the WKB solution the QNMs are:

QNM and Greybody Factors for Charged Black hole

- Given the WKB solution the QNMs are:

$$\Re(\omega) = \sqrt{\lambda} \frac{\sqrt{(Q^2 - 2Mr_c + r_c^2)(1 - a^2r_c^2)}}{r_c^2}, \quad (30)$$

QNM and Greybody Factors for Charged Black hole

- Given the WKB solution the QNMs are:

$$\Re(\omega) = \sqrt{\lambda} \frac{\sqrt{(Q^2 - 2Mr_c + r_c^2)(1 - a^2r_c^2)}}{r_c^2}, \quad (30)$$

$$\frac{\Im(\omega)}{n + \frac{1}{2}} = - \frac{\sqrt{(Q^2 - 2Mr_c + r_c^2)(1 - a^2r_c^2)(-10Q^2 + 12Mr_c + 3(-1 + a^2Q^2)r_c^2 - 2a^2Mr_c^3)}}{r_c^3} \quad (31)$$

QNM and Greybody Factors for Charged Black hole

- Given the WKB solution the QNMs are:

$$\Re(\omega) = \sqrt{\lambda} \frac{\sqrt{(Q^2 - 2Mr_c + r_c^2)(1 - a^2r_c^2)}}{r_c^2}, \quad (30)$$

$$\frac{\Im(\omega)}{n + \frac{1}{2}} = - \frac{\sqrt{(Q^2 - 2Mr_c + r_c^2)(1 - a^2r_c^2)(-10Q^2 + 12Mr_c + 3(-1 + a^2Q^2)r_c^2 - 2a^2Mr_c^3)}}{r_c^3} \quad (31)$$

- The greybody factor is

$$\Gamma(\omega) = \left(\exp \left[\left(\sqrt{\lambda} - \frac{\omega^2 r_c^4}{\sqrt{\lambda}(Q^2 - 2Mr_c + r_c^2)(1 - a^2r_c^2)} \right) \frac{\pi r_c}{\sqrt{-10Q^2 + 12Mr_c + 3(-1 + a^2Q^2)r_c^2 - 2a^2Mr_c^3}} \right] + 1 \right)^{-1} \quad (32)$$

Conclusions and Future Work

- Study the **Highly Damped Asymptotic Limit** (it turns out that it is very similar to De Sitter Black Hole);

Conclusions and Future Work

- Study the **Highly Damped Asymptotic Limit** (it turns out that it is very similar to De Sitter Black Hole);
- Obtain **QNMs** and **Greybody factors** for a black hole with **rotation**;

Conclusions and Future Work

- Study the **Highly Damped Asymptotic Limit** (it turns out that it is very similar to De Sitter Black Hole);
- Obtain **QNMs** and **Greybody factors** for a black hole with **rotation**;
- Examine the **stability** of the C –metric;

Conclusions and Future Work

- Study the **Highly Damped Asymptotic Limit** (it turns out that it is very similar to De Sitter Black Hole);
- Obtain **QNMs** and **Greybody factors** for a black hole with **rotation**;
- Examine the **stability** of the C –metric;
- Test the **Zero Love** Hypothesis.

Appendix A - Teukolsky equation (Uncharged Black Hole)

- Using the Newman Penrose formalism gives us the master equation

$$(r^2 f(r))^{-s} \frac{d}{dr} \left((r^2 f(r))^{s+1} \frac{dR(r)}{dr} \right) + V(r) R(r) = 0, \quad (33)$$

with

$$\begin{aligned} V(r) = & -2ra^2(r - M)(1 + s)(1 + 2s) + \frac{r^2 \omega^2}{f(r)} - \\ & - 2is\omega r \left[\frac{M}{r - 2M} - \frac{1}{1 - a^2 r^2} \right] - B \end{aligned} \quad (34)$$

where B is a separation constant.

Appendix A - Teukolsky equation (Uncharged Black Hole)

- Using the Newman Penrose formalism gives us the master equation

$$(r^2 f(r))^{-s} \frac{d}{dr} \left((r^2 f(r))^{s+1} \frac{dR(r)}{dr} \right) + V(r) R(r) = 0, \quad (33)$$

with

$$\begin{aligned} V(r) = & -2ra^2(r - M)(1 + s)(1 + 2s) + \frac{r^2\omega^2}{f(r)} - \\ & - 2is\omega r \left[\frac{M}{r - 2M} - \frac{1}{1 - a^2r^2} \right] - B \end{aligned} \quad (34)$$

where B is a separation constant.

- Briefly, we'll see that B is related to λ .

Change of Variables

- By performing the following transformation

$$\Phi(r) = r(r^2 f(r))^{s/2} R(r) \quad \text{and} \quad x = \int \frac{dr}{f(r)}, \quad (35)$$

we obtain

Change of Variables

- By performing the following transformation

$$\Phi(r) = r(r^2 f(r))^{s/2} R(r) \quad \text{and} \quad x = \int \frac{dr}{f(r)}, \quad (35)$$

we obtain

$$\frac{d^2\Phi(r)}{dx^2} + (\omega^2 - V_r(r)) \Phi(r) = 0. \quad (36)$$

Change of Variables

- By performing the following transformation

$$\Phi(r) = r(r^2 f(r))^{s/2} R(r) \quad \text{and} \quad x = \int \frac{dr}{f(r)}, \quad (35)$$

we obtain

$$\frac{d^2\Phi(r)}{dx^2} + (\omega^2 - V_r(r)) \Phi(r) = 0. \quad (36)$$

- The potential is given by

$$V_r = \frac{(r - 2M)(1 - a^2 r^2)(2M + rs) + (M - r + a^2 Mr^2)^2 s^2}{r^4} + \frac{(r - 2M)(1 - a^2 r^2)}{r^3} B - \frac{2i(r + M(-3 + a^2 r^2))s\omega}{r^2}. \quad (37)$$

Take the Eikonal Limit $B \rightarrow \infty$

- By now taking the eikonal limit $B \rightarrow \infty$, which means saving terms proportional in B and ω^2 , we get:

$$V_r(r) = \left(1 - \frac{2M}{r}\right) (1 - a^2 r^2) \frac{B}{r^2} = B \frac{f(r)}{r^2}, \quad (38)$$

which is identical to the eikonal limit in applied to the scalar wave equation.

Take the Eikonal Limit $B \rightarrow \infty$

- By now taking the eikonal limit $B \rightarrow \infty$, which means saving terms proportional in B and ω^2 , we get:

$$V_r(r) = \left(1 - \frac{2M}{r}\right) (1 - a^2 r^2) \frac{B}{r^2} = B \frac{f(r)}{r^2}, \quad (38)$$

which is identical to the eikonal limit in applied to the scalar wave equation.

- Thus the limit is the same for different spin perturbations and $B = \lambda$ in this approximation.