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NEUTRON STARS" MAGNETIC FIELDS PURELY

POLOIDAL
FIELDS ARE
NOT STABLE...

e Typically, purely poloidal fields are considerea
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observations
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« 2/3 hot spots only 1in the southern
hemisphere

—> non-dipolar magnetic field!
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MAGNETIC FIELD MODELS

More general scenario with exterior dipole

A = aTAT[r < RNS] + (1 — aT)AP [x] = {1, if x is true 0

0, otherwise

e ar =0 — purely poloidal (P)

l
l ASR)

XIM

Rainho et al. (arXiv:2510.17511) _6



https://arxiv.org/abs/2510.17511

MAGNETIC FIELD MODELS

More general scenario with exterior dipole

A — aTAT[r < RNS] _|_ (1 _ aT)AP x] = {1, it x is true

0, otherwise

N
10
e ar =0 — purely poloidal (P) DQQP\’( QY\XQ“S
. s AN N
* ay =1 — no exterior component & > %Sg?\
O
oL AN 2N
—10 ~0 0 5
XIM

Rainho et al. (arXiv:2510.17511)

10



https://arxiv.org/abs/2510.17511
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More general scenario with exterior dipole
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MAGNETIC FIELD MODELS CONFIGURATIONS, SET
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NUMERICAL SETUP FOR GRMHD SIMULATIONS

* |nitial data from COCAL
* EOS: SLy and WFF1
* |llinois GRMHD code

* BSSN formulation +
puncture gauge conditions

O ‘dea‘ M H D Rainho et al. (arXiv:2510.17511)
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ELECTROMAGNETIC SIGNALS: INCIPIENT JET
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GWS: DETECTABILITY OF o WHHLY o WHMLles
THE SHIFT | -1 ms up to 6 ms .
4000 1 T
. T
* BayesWave algorithm [N. J. Cornish and 23500? [}
T. B. Littenberg, 2015] 3000- 1

* Third-generation detector Einstein

Telescope

* Optimal sky location and inclination

Onetwork

* Distinguishable up to ~ S0 Mpc
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GWS: ADDITIONAL MODE
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GWS: DENSITY EIGENFUNCTIONS
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GWS: DENSITY EIGENFUNCTIONS
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GWS: DENSITY EIGENFUNCTIONS
Additional mode
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CONCLUSIONS

Poloidal field inside important to the formation of an incipient jet.
Ditferent magnetic fields lead to a shift in the GWs' peak.

Some GW peaks might be distinguishable by future detectors tor closer
events.

Hot rings correlate with regions of convective stability

Thank you!

lanrain@uv.es
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VECTOR POTENTIAL EXPRESSIONS
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INITIAL DATA

EOS Mo[Mg] Ri[km] C A M[Mg] M

SLy  3.04  9.05 0.17 353 2.70 0.030
SLy2.54 2.83 925 0.16 498 2.54 0.029
WFF1 295  7.86 0.19 232 260 0.037

RESOLUTION

| ON Grid hierarc:hyJr Max. resolution /Ny«
SLy 3024.03km/2™ ! 95 m 91

SLy2.54 5748km/2™ ! 90 m 102
WFF1 2646.03km/2™ 1 86 m 91

T 1 denotes the level number.
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ELECTROMAGNETIC ENERGY

—— SLy P —— SLy SP SLy Toos —— SLy Tos SLy2.54 P

——+ WFF1 P == WFF1_SP —~. WFF1 Tpos == WFF1 Tgs Case M[Cl’g] B[G]

L L A s S B S S S B B B SLy_P 1050.661016.23
: SLy2.54 P 10°%-°t 10%6-2°
SLy_SP 1048.72 1015.26
SLy_T().95 1050.53 1016.17
SLy_T(),5 1049.96 1015.88

1052 :

M lerg]

WFF1 P 1050.82 1016.41
WFF1 SP 1048.86 1015.43
P E WFFl_T(),95 1050.39 1016.19
[ : L - L 110 L 115 L 2'0 WFFl_T(),5 1050.05 1016.02

t—t |ms]
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21


https://arxiv.org/abs/2510.17511

ELECTROMAGNETIC LUMINOSITY
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ELECTROMAGNETIC SIGNALS: EJECTA
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At 20 ms after merger:
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WAVEFORMS (CASES THAT COLLAPSE)
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EM SIGNALS: JETS CONSISTENT WITH SHORT GRB
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