

On the uniqueness of the Kerr-(A)dS metric spacetime as a type II(D) solution in six dimensions¹

Marcello Ortaggio

Institute of Mathematics
Czech Academy of Sciences

XVIII Black Holes Workshop, Lisbon – December 18th, 2025

¹Joint work with D. Kokoška, Phys. Rev. D 112 (2025) 044050

Contents

1 Background: 4D Golden Age's results

2 Some developments in HD

3 New results in 6D

Background: 4D Golden Age's results

Goldberg-Sachs theorem (1962)

- ① vacuum: $R_{ab} = 0$
- ② type II (or more special): $\ell_{[e}C_{a]bcd}\ell^b\ell^c = 0 \quad (\ell_a\ell^a = 0)$

$\Rightarrow \ell$ geodesic and shearfree

Background: 4D Golden Age's results

Goldberg-Sachs theorem (1962)

- ① vacuum: $R_{ab} = 0$
- ② type II (or more special): $\ell_{[e}C_{a]bcd}\ell^b\ell^c = 0 \quad (\ell_a\ell^a = 0)$
⇒ ℓ geodesic and shearfree

$$\Leftrightarrow \ell_{a;b}\ell^b = 0 \text{ and } \boldsymbol{\rho} = \begin{pmatrix} \theta & \omega \\ -\omega & \theta \end{pmatrix},$$

where $\rho_{ij} \equiv \ell_{a;b}m^{(i)a}m^{(j)b}$ (in a spatial o.n. frame)

Background: 4D Golden Age's results

Goldberg-Sachs theorem (1962)

- ① vacuum: $R_{ab} = 0$
- ② type II (or more special): $\ell_{[e}C_{a]bcd}\ell^b\ell^c = 0 \quad (\ell_a\ell^a = 0)$

$\Rightarrow \ell$ geodesic and shearfree

$$\Leftrightarrow \ell_{a;b}\ell^b = 0 \text{ and } \boldsymbol{\rho} = \begin{pmatrix} \theta & \omega \\ -\omega & \theta \end{pmatrix},$$

where $\rho_{ij} \equiv \ell_{a;b}m^{(i)a}m^{(j)b}$ (in a spatial o.n. frame)

→ 1st step in the Newman-Penrose integration.

Background: 4D Golden Age's results

Goldberg-Sachs theorem (1962)

- ① vacuum: $R_{ab} = 0$
- ② type II (or more special): $\ell_{[e}C_{a]bcd}\ell^b\ell^c = 0 \quad (\ell_a\ell^a = 0)$

$\Rightarrow \ell$ geodesic and shearfree

$$\Leftrightarrow \ell_{a;b}\ell^b = 0 \text{ and } \rho = \begin{pmatrix} \theta & \omega \\ -\omega & \theta \end{pmatrix},$$

where $\rho_{ij} \equiv \ell_{a;b}m^{(i)a}m^{(j)b}$ (in a spatial o.n. frame)

→ 1st step in the Newman-Penrose integration.

Notably:

- Kerr'63: "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics"
- Kinnersley'69: complete classification and integration for type D.

Some developments in HD

- 1 Weyl tensor classification [Coley-Milson-Pravda-Pravdová'04]

Some developments in HD

- ① Weyl tensor classification [Coley-Milson-Pravda-Pravdová'04]
- ② NP formalism

[Pravda-Pravdová-Coley-Milson'04, Coley-Milson-Pravda-Pravdová'04,
M.O.-Pravda-Pravdová'07]

Some developments in HD

- ① Weyl tensor classification [Coley-Milson-Pravda-Pravdová'04]
- ② NP formalism
[Pravda-Pravdová-Coley-Milson'04, Coley-Milson-Pravda-Pravdová'04, M.O.-Pravda-Pravdová'07]
- ③ Goldberg-Sachs theorem:
 - “violations”
[Myers-Perry'86, Frolov-Stojković'03, Pravda-Pravdová-M.O.'07]
 - partial extensions
[Pravda-Pravdová-Coley-Milson'04, M.O.-Pravda-Pravdová'09, M.O.-Pravda-Pravdová-Reall'12, M.O.-Pravda-Pravdová'13,'18, Tintěra-Pravda'19]

Some developments in HD

- ① Weyl tensor classification [Coley-Milson-Pravda-Pravdová'04]
- ② NP formalism
[Pravda-Pravdová-Coley-Milson'04, Coley-Milson-Pravda-Pravdová'04, M.O.-Pravda-Pravdová'07]
- ③ Goldberg-Sachs theorem:
 - “violations”
[Myers-Perry'86, Frolov-Stojković'03, Pravda-Pravdová-M.O.'07]
 - partial extensions
[Pravda-Pravdová-Coley-Milson'04, M.O.-Pravda-Pravdová'09, M.O.-Pravda-Pravdová-Reall'12, M.O.-Pravda-Pravdová'13,'18, Tintěra-Pravda'19]
- ④ Complete classification of all 5D vacua of type II(D)
[Bernardi de Freitas-Godazgar-Reall'15,'16, Wylleman'15, García-Parrado&Wylleman'11, Reall-Graham-Turner'13]

Assumptions in this work:

① $R_{ab} = (n - 1)\lambda, \quad n = 6$

Assumptions in this work:

- ① $R_{ab} = (n - 1)\lambda, \quad n = 6$
- ② $\ell_{[e} C_{a]b[c} \ell_{d]} \ell^b = 0$ (type II), $\ell = \partial_r$ geodesic

Assumptions in this work:

- ① $R_{ab} = (n - 1)\lambda, \quad n = 6$
- ② $\ell_{[e} C_{a]b[cd} \ell_{f]} \ell^b = 0$ (type II), $\ell = \partial_r$ geodesic
- ③ $\text{rank}(\rho) = 4$

Assumptions in this work:

- ① $R_{ab} = (n - 1)\lambda, \quad n = 6$
- ② $\ell_{[e} C_{a]b[cd} \ell_{f]} \ell^b = 0$ (type II), $\ell = \partial_r$ geodesic
- ③ $\text{rank}(\rho) = 4$
- ④ $C_{ijkl} = o(r^{-2})$ for $r \rightarrow \infty$ (asymptotic (A)dS)

Assumptions in this work:

- ① $R_{ab} = (n-1)\lambda, \quad n = 6$
- ② $\ell_{[e} C_{a]b[cd} \ell_{f]} \ell^b = 0$ (type II), $\ell = \partial_r$ geodesic
- ③ $\text{rank}(\rho) = 4$
- ④ $C_{ijkl} = o(r^{-2})$ for $r \rightarrow \infty$ (asymptotic (A)dS)

\Rightarrow partial extension of Goldberg-Sachs [M.O.-Pravda-Pravdová'09]:

$$\rho^{-1} = \text{diag} \left(\begin{bmatrix} r & -y_1 \\ y_1 & r \end{bmatrix}, \begin{bmatrix} r & -y_2 \\ y_2 & r \end{bmatrix} \right).$$

Assumptions in this work:

- ① $R_{ab} = (n-1)\lambda, \quad n = 6$
- ② $\ell_{[e} C_{a]b[cd} \ell_{f]} \ell^b = 0$ (type II), $\ell = \partial_r$ geodesic
- ③ $\text{rank}(\rho) = 4$
- ④ $C_{ijkl} = o(r^{-2})$ for $r \rightarrow \infty$ (asymptotic (A)dS)

\Rightarrow partial extension of Goldberg-Sachs [M.O.-Pravda-Pravdová'09]:

$$\rho^{-1} = \text{diag} \left(\begin{bmatrix} r & -y_1 \\ y_1 & r \end{bmatrix}, \begin{bmatrix} r & -y_2 \\ y_2 & r \end{bmatrix} \right).$$

- ⑤ ρ is “generic”: $|y_1| \neq |y_2|$, $dy_1 \neq 0 \neq dy_2$

Result:

explicit form of all metrics in terms of 1+3 parameters $\hat{\mathcal{U}}^0, c_0, d_0, \mu$

Result:

explicit form of all metrics in terms of 1+3 parameters $\hat{\mathcal{U}}^0, c_0, d_0, \mu$

$$\begin{aligned}
 ds^2 = & 2dr \left[du + (y_1^2 + y_2^2) d\phi_1 + y_1^2 y_2^2 d\phi_2 \right] + (r^2 + y_1^2) \frac{y_2^2 - y_1^2}{\mathcal{P}(y_1)} dy_1^2 \\
 & + \frac{\mathcal{P}(y_1)}{(r^2 + y_1^2)(y_2^2 - y_1^2)} \left[du + (y_2^2 - r^2) d\phi_1 - r^2 y_2^2 d\phi_2 \right]^2 + (y_1 \leftrightarrow y_2) \\
 & + \frac{\mathcal{Q}(r)}{(r^2 + y_1^2)(r^2 + y_2^2)} \left[du + (y_1^2 + y_2^2) d\phi_1 + y_1^2 y_2^2 d\phi_2 \right]^2,
 \end{aligned}$$

$$\mathcal{P}(y_1) \equiv \lambda y_1^6 + 2\hat{\mathcal{U}}^0 y_1^4 - c_0 y_1^2 - d_0,$$

$$\mathcal{Q}(r) \equiv \lambda r^6 - 2\hat{\mathcal{U}}^0 r^4 - c_0 r^2 + d_0 + \mu r.$$

Comments:

- all of type D and Kerr-Schild

Comments:

- all of type D and Kerr-Schild

→ **double copy** [Monteiro-O'Connel-White'14,

Bahjat-Abbas&Luna&White'17, Carrillo-González&Penco&Trodden'18]

$$A = \frac{er}{(r^2 + y_1^2)(r^2 + y_2^2)} \left[du + (y_1^2 + y_2^2) d\phi_1 + y_1^2 y_2^2 d\phi_2 \right]$$

cf. [Aliev'07, Krtouš'07, Chen-Lü'08]

Comments:

- all of type D and Kerr-Schild

→ **double copy** [Monteiro-O'Connel-White'14,

Bahjat-Abbas&Luna&White'17, Carrillo-González&Penco&Trodden'18]

$$A = \frac{er}{(r^2 + y_1^2)(r^2 + y_2^2)} [du + (y_1^2 + y_2^2) d\phi_1 + y_1^2 y_2^2 d\phi_2]$$

cf. [Aliev'07, Krtouš'07, Chen-Lü'08]

- belong to the general Kerr-NUT-(A)dS class [Chen-Lü-Pope'06]

Comments:

- all of type D and Kerr-Schild

→ **double copy** [Monteiro-O'Connel-White'14,

Bahjat-Abbas&Luna&White'17, Carrillo-González&Penco&Trodden'18]

$$A = \frac{er}{(r^2 + y_1^2)(r^2 + y_2^2)} \left[du + (y_1^2 + y_2^2) d\phi_1 + y_1^2 y_2^2 d\phi_2 \right]$$

cf. [Aliev'07, Krtouš'07, Chen-Lü'08]

- belong to the general Kerr-NUT-(A)dS class [Chen-Lü-Pope'06]
- special subfamily:

$$\mathcal{P}(s) = (\lambda s^2 + \epsilon)(s^2 - a_1^2)(s^2 - a_2^2), \quad \epsilon = 0, \pm 1$$

→ (extended) Kerr-(A)dS metrics

[Gibbons-Lü-Page-Pope'05, Mars&Peón-Nieto'22, Chruściel-Cong-Gray'25]

In progress: non-generic branches (single/equal spins, Taub-NUT and shearfree limits, . . .)

① $dy_1 = 0 \neq dy_2$ ($y_1 = 0$ vs. $y_1 \neq 0$)

② $dy_1 = 0 = dy_2$

③ $y_1 = y_2$.

Thank you!