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Cavity surrounded by a heat reservoir

Euclidean path integral approach
Gibbons and Hawking1: Z =

∫
Dge−I [g ], Z0loop = e−I [gcl] = e−βF ;

Gross, Perry and Yaffe2: Black hole nucleation from hot flat space;
York’s realization3: Finite cavity.

Entropy of self-gravitating radiation fluid
Sorkin, Wald and Zhang4: radiation as perfect fluid inside a spherical cavity.

1G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).
2D. J. Gross, M. J. Perry and L. G. Yaffe, Phys. Rev. D 25, 330 (1982).
3J. W. York, Phys. Rev. D 33, 2092 (1986).
4R. D. Sorkin, R. M. Wald and Z. J. Zhang, Gen. Rel. Grav. 13, 1127 (1981).
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Self-gravitating fluid inside a cavity
The setup

The action

I =− 1
16π lp2

∫ √
gRd4x+

∫
Fmd

4x− 1
8π lp2

∫
(K −K0)

√
γd3x

R, β

Radiation

Spherical symmetry
ds2 = b(y)2dτ2+a(y)2dy2+ r2dΩ2

Boundary conditions
Regularity: b(0) finite, b′

a |y=0 = 0,
r(0) = 0;
Heat reservoir: β =2πb(1), r(1) =R;
Perfect fluid: ε = aT 4

loc;
Local temperature: Tloc = 1

2πb(y)

(ensures the conservation of the
stress-tensor).
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Self-gravitating fluid inside a cavity
Reduced action, equilibrium and stability

Imposing the Hamiltonian constraints, the action becomes (f = 1− 2m(r)
r )

I (R,β ;m(r)) = Rβ

l2p

(
1−

√
f
)
−4π

∫ R
0 s r2f −1/2dr ; m(r) = 4π

∫ r
0 εr2dr

R, β

m(r)

Equilibrium equation (δ I = 0)
1

ε+p
dp
dr +

l2p
r2f

(
4πr3p+m

)
= 0 (TOV equation)

Stability conditions (δ 2I > 0)
L̂δm =−χ

δmπTloc

r2f
3
2 (ε+p)

; δm′(R) = 0

Stable if χ > 0 for all modes δm

L̂δm =
(

δm′

4πr2
√
f T 2

loc

dTloc
dε

)′
+

2l2p

rT 2
locf

3
2

(
Tloc
2r − dTloc

dr

)
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Self-gravitating fluid inside a cavity
Equilibrium solutions

r d(m
′)

dr =
2m′(1−4

l2p m

r − 2
3 l

2
p m

′)

(1−2
l2p m

r )

r d(m/r)
dr =m′− (mr )
z ∝ log(r)
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Self-gravitating fluid inside a cavity
Thermodynamic and mechanical stability

Thermodynamic and mechanical
stability (orange)

L̂δm =−χ
δmπTloc

r2f
3
2 (ε+p)

; δm′(R) = 0

Mechanical stability (blue)
δm(R) = 0
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Self-gravitating fluid inside a cavity
Thermodynamics

Entropy

S = 2(4πa)
1
4

9

(
R
lp

) 3
2 l2p (m

′+m
R )

(l2p m
′)

1
4

√
1− 2l2p m

R

R = lp:

S ∝ (
2l2p m

R )0.755+0.5(
2l2p m

R )2.24

Sbh = π
( r+
R

)2
Energy

E = R
l2p

(
1−

√
1− 2l2p m

R

)
Black - radiation entropy;

Orange - fit to radiation entropy;
Blue - black hole entropy;
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Phase diagram Self-gravitating radiation vs Black hole
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Summary

Construction of the canonical ensemble of a radiation fluid inside a cavity:

There is a stable solution that exists for a maximum compactness

(
l2p m

R ≈ 0.19) and temperature;

Thermodynamic and mechanic stability is represented by one single
condition;

Entropy goes as
(
l2p m

R

)0.755

at first order;

There is black hole nucleation;

Picture becomes intricate beyond the Planck regime;
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