

ROTATING THIN SHELLS IN EINSTEIN-GAUSS-BONNET GRAVITY

João D. Álvares^{1,2,4}, Tiago V. Fernandes^{1,3} & Jorge V. Rocha^{1,2,3}

¹CENTRA, IST, Universidade de Lisboa

²Instituto de Telecomunicações, ISCTE

³Departamento de Matemática, ISCTE

⁴Department of Physics and Astronomy, University of Mississippi

XVIII Black Holes Workshop, 18 & 19 December 2025

Supported by **2024.04456.CERN**

I. Rotating Solution in Einstein-Gauss-Bonnet

II. Thin Shells

III. Preliminary Results

IV. Conclusions

I. Rotating Solution in Einstein-Gauss-Bonnet

II. Thin Shells

III. Preliminary Results

IV. Conclusions

I. Rotating Solution in Einstein-Gauss-Bonnet

Finding rotating solutions

I. Rotating Solution in Einstein-Gauss-Bonnet

Finding rotating solutions

- 47 years between Schwarzschild and Kerr

Finding rotating solutions

- 47 years between Schwarzschild and Kerr
- Other rotating solutions found?

Finding rotating solutions

- 47 years between Schwarzschild and Kerr
- Other rotating solutions found?
 - 3D+AdS (BTZ)

Finding rotating solutions

- 47 years between Schwarzschild and Kerr
- Other rotating solutions found?
 - 3D+AdS (BTZ)
 - Higher dimensions (Myers-Perry)

Finding rotating solutions

- 47 years between Schwarzschild and Kerr
- Other rotating solutions found?
 - 3D+AdS (BTZ)
 - Higher dimensions (Myers-Perry)
 - Coupled to non-linear electrodynamics
 - etc.

I. Rotating Solution in Einstein-Gauss-Bonnet

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity

I. Rotating Solution in Einstein-Gauss-Bonnet

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity

$$ds^2 = l^2 \cosh^2(\rho) \left[-A(r)dt^2 + \frac{dr^2}{A(r)} + r^2(d\psi + N_\psi dt)^2 \right] + l^2 d\rho^2 + l^2 \cosh^2(\rho - \rho_0)dz^2,$$

I. Rotating Solution in Einstein-Gauss-Bonnet

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity

$$ds^2 = l^2 \cosh^2(\rho) \left[-A(r)dt^2 + \frac{dr^2}{A(r)} + r^2(d\psi + N_\psi dt)^2 \right] + l^2 d\rho^2 + l^2 \cosh^2(\rho - \rho_0)dz^2,$$

where

$$A(r) = r^2 - M - \frac{b}{r} + \frac{j^2}{4r^2}, \quad N^\psi = -\frac{j}{2r^2}.$$

I. Rotating Solution in Einstein-Gauss-Bonnet

But there's a catch

I. Rotating Solution in Einstein-Gauss-Bonnet

Reviewing Lovelock Gravity

Reviewing Lovelock Gravity

5D AdS General Relativity

$$S = \int \sqrt{-g} (R - 2\Lambda) d^5x$$

Reviewing Lovelock Gravity

5D AdS General Relativity

$$S = \int \sqrt{-g} (R - 2\Lambda) d^5x$$

Lovelock - Generalization of GR: **divergence free, 2nd order EOM**. In 5D,

$$S = \int \sqrt{-g} (R - 2\Lambda + \alpha (R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma})) d^5x$$

Reviewing Lovelock Gravity

5D AdS General Relativity

$$S = \int \sqrt{-g} (R - 2\Lambda) d^5x$$

Lovelock - Generalization of GR: **divergence free, 2nd order EOM**. In 5D,

$$S = \int \sqrt{-g} (R - 2\Lambda + \alpha (R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma})) d^5x$$

5D Lovelock = Einstein-Gauss-Bonnet

I. Rotating Solution in Einstein-Gauss-Bonnet

Still no rotating solution in EGB

I. Rotating Solution in Einstein-Gauss-Bonnet

Still no rotating solution in EGB

Except for a specific point

I. Rotating Solution in Einstein-Gauss-Bonnet

Chern-Simons Point

- Set $\Lambda = -\frac{3}{4\alpha}$

I. Rotating Solution in Einstein-Gauss-Bonnet

Chern-Simons Point

- Set $\Lambda = -\frac{3}{4\alpha}$
- Example: Boulware-Deser solution

Chern-Simons Point

- Set $\Lambda = -\frac{3}{4\alpha}$
- Example: Boulware-Deser solution

$$ds^2 = -V^2(r)dt^2 + V^{-2}(r)dr^2 + r^2d\Omega^2,$$

with

$$V^2(r) = 1 + \frac{r^2}{4\alpha} - \frac{r^2}{4\alpha} \sqrt{1 + \frac{16\alpha M}{r^4} + \frac{4\Lambda\alpha}{3}}.$$

I. Rotating Solution in Einstein-Gauss-Bonnet

Chern-Simons Point

$$V^2(r) = 1 + \frac{r^2}{4\alpha} - \frac{r^2}{4\alpha} \sqrt{1 + \frac{16\alpha M}{r^4} + \frac{4\Lambda\alpha}{3}}.$$

I. Rotating Solution in Einstein-Gauss-Bonnet

Chern-Simons Point

$$V^2(r) = 1 + \frac{r^2}{4\alpha} - \frac{r^2}{4\alpha} \sqrt{1 + \frac{16\alpha M}{r^4} + \frac{4\Lambda\alpha}{3}}.$$

Schwarzschild:

$$\Lambda = 0 : \quad \lim_{\alpha \rightarrow 0} V^2 = 1 - \frac{2M}{r^2}$$

I. Rotating Solution in Einstein-Gauss-Bonnet

Chern-Simons Point

$$V^2(r) = 1 + \frac{r^2}{4\alpha} - \frac{r^2}{4\alpha} \sqrt{1 + \frac{16\alpha M}{r^4} + \frac{4\Lambda\alpha}{3}}.$$

Schwarzschild:

$$\Lambda = 0 : \quad \lim_{\alpha \rightarrow 0} V^2 = 1 - \frac{2M}{r^2}$$

Schwarzschild-AdS:

$$\Lambda \neq 0 : \quad \lim_{\alpha \rightarrow 0} V^2 = 1 - \frac{2M}{r^2} - \frac{\Lambda}{8} r^2$$

I. Rotating Solution in Einstein-Gauss-Bonnet

Chern-Simons Point

$$V^2(r) = 1 + \frac{r^2}{4\alpha} - \frac{r^2}{4\alpha} \sqrt{1 + \frac{16\alpha M}{r^4} + \frac{4\Lambda\alpha}{3}}.$$

Schwarzschild:

$$\Lambda = 0 : \quad \lim_{\alpha \rightarrow 0} V^2 = 1 - \frac{2M}{r^2}$$

Schwarzschild-AdS:

$$\Lambda \neq 0 : \quad \lim_{\alpha \rightarrow 0} V^2 = 1 - \frac{2M}{r^2} - \frac{\Lambda}{8} r^2$$

Chern-Simons:

$$\Lambda = -\frac{3}{4\alpha} : \quad V(r) = 1 - \sqrt{\frac{M}{\alpha}} + \frac{r^2}{4\alpha},$$

I. Rotating Solution in Einstein-Gauss-Bonnet

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity

$$ds^2 = l^2 \cosh^2(\rho) \left[-A(r)dt^2 + \frac{dr^2}{A(r)} + r^2(d\psi + N_\psi dt)^2 \right] + l^2 d\rho^2 + l^2 \cosh^2(\rho - \rho_0)dz^2,$$

where

$$A(r) = r^2 - M - \frac{b}{r} + \frac{j^2}{4r^2}, \quad N^\psi = -\frac{j}{2r^2}.$$

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity
in the Chern-Simons point

$$ds^2 = l^2 \cosh^2(\rho) \left[-A(r)dt^2 + \frac{dr^2}{A(r)} + r^2(d\psi + N_\psi dt)^2 \right] + l^2 d\rho^2 + l^2 \cosh^2(\rho - \rho_0)dz^2,$$

where

$$A(r) = r^2 - M - \frac{b}{r} + \frac{j^2}{4r^2}, \quad N^\psi = -\frac{j}{2r^2}.$$

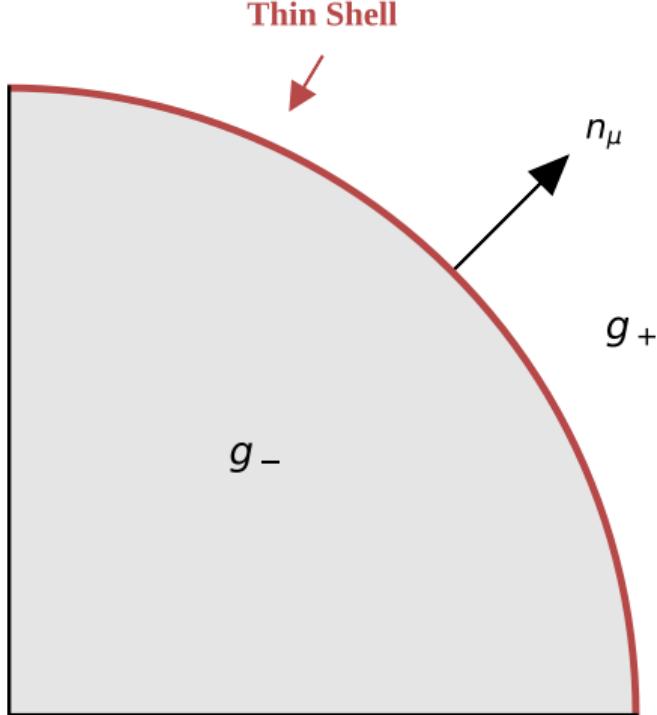
I. Rotating Solution in Einstein-Gauss-Bonnet

II. Thin Shells

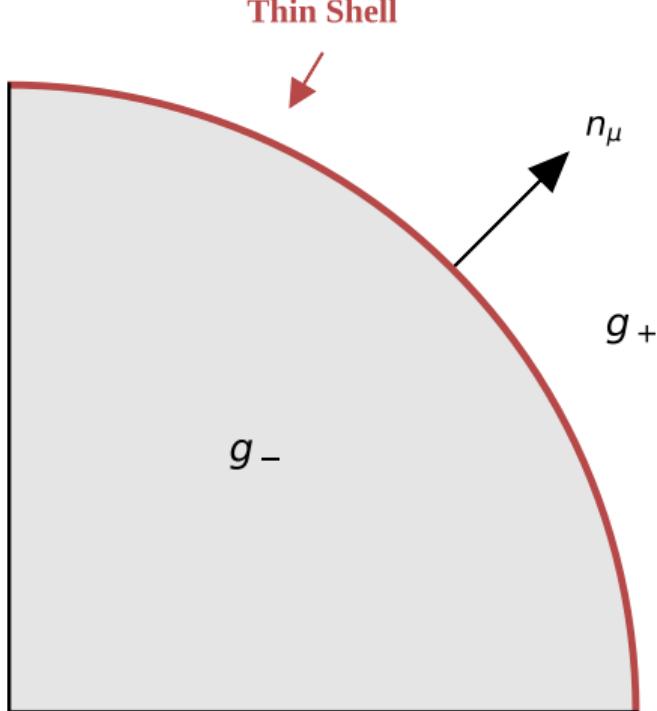
III. Preliminary Results

IV. Conclusions

II. Thin Shells



II. Thin Shells

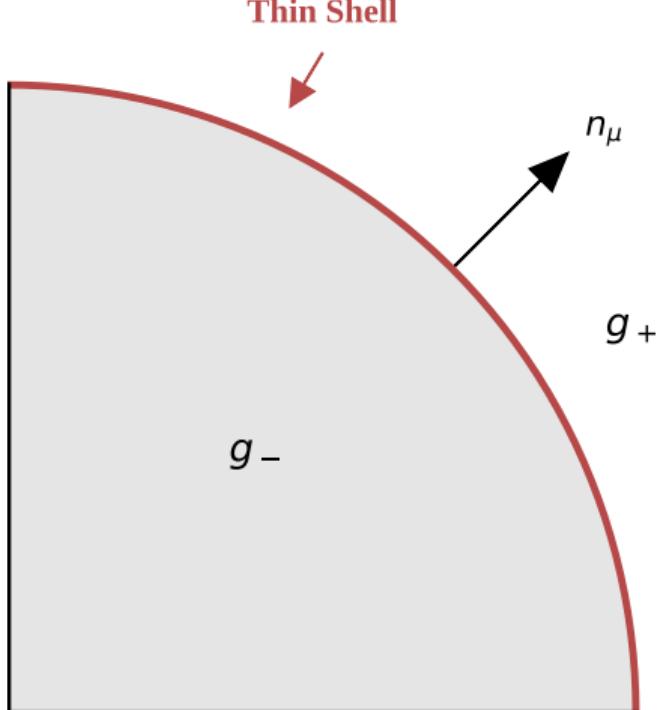


Connecting Spacetimes

- Match induced metric on thin shell

$$h_{ij}^- = h_{ij}^+$$

II. Thin Shells



Connecting Spacetimes

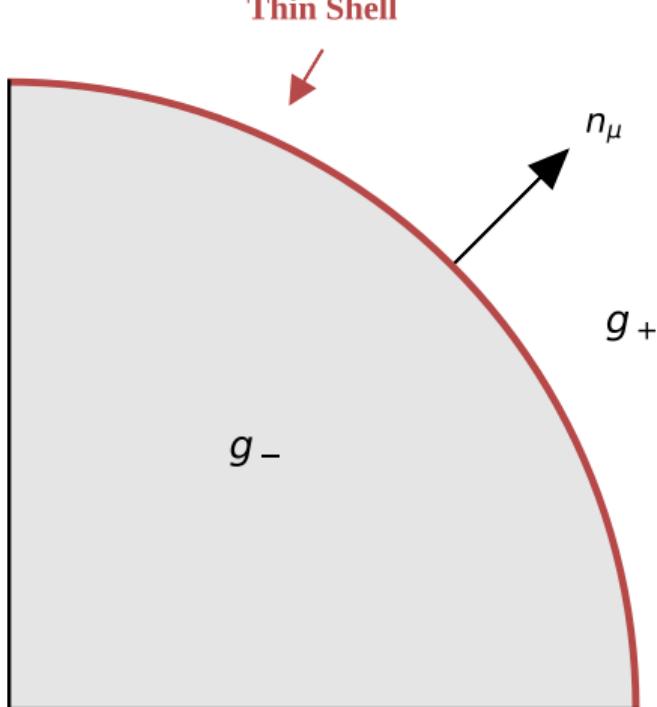
- Match induced metric on thin shell

$$h_{ij}^- = h_{ij}^+$$

- Extrinsic curvature jump. In GR:

$$[K_{ij} - K h_{ij}] = -8\pi S_{ij}$$

II. Thin Shells



Connecting Spacetimes

- Match induced metric on thin shell

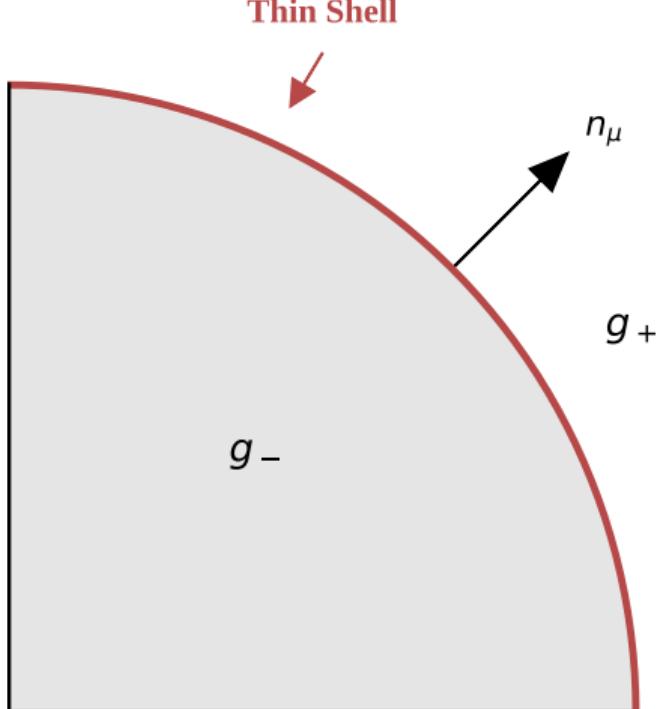
$$h_{ij}^- = h_{ij}^+$$

- Extrinsic curvature jump. In GR:

$$[K_{ij} - K h_{ij}] = -8\pi S_{ij}$$

- S_{ij} : shell stress-energy tensor
- $[A] = A^+ - A^-$: jump across shell

II. Thin Shells



Connecting Spacetimes

- Match induced metric on thin shell

$$h_{ij}^- = h_{ij}^+$$

- Extrinsic curvature jump. In GR:

$$[K_{ij} - K h_{ij}] = -8\pi S_{ij}$$

- S_{ij} : shell stress-energy tensor
- $[A] = A^+ - A^-$: jump across shell
- Lovelock: +1 term (Y_{ij})

II. Thin Shells

Openheimer-Snyder

- Inner metric (g_-): dust
- Outer metric (g_+): Schwarzschild

II. Thin Shells

Openheimer-Snyder

- Inner metric (g_-): dust
- Outer metric (g_+): Schwarzschild

Rotating Openheimer-Snyder?

Openheimer-Snyder

- Inner metric (g_-): dust
- Outer metric (g_+): Schwarzschild

Rotating Openheimer-Snyder?

- No analogy for **Kerr** yet

Openheimer-Snyder

- Inner metric (g_-): dust
- Outer metric (g_+): Schwarzschild

Rotating Openheimer-Snyder?

- No analogy for **Kerr** yet
- In 5D, **1405.1433**: Collapsing thin shells with rotation (J. V. Rocha et. al)

Openheimer-Snyder

- Inner metric (g_-): dust
- Outer metric (g_+): Schwarzschild

Rotating Openheimer-Snyder?

- No analogy for **Kerr** yet
- In 5D, **1405.1433**: Collapsing thin shells with rotation (J. V. Rocha et. al)
 - Inner metric (g_-): Vacuum
 - Outer metric (g_+): Myers-Perry
 - Thin Shell (S_{ij}): Dust

II. Thin Shells

What if inner and outer spacetimes are:

$$ds^2 = l^2 \cosh^2(\rho) \left[-A(r)dt^2 + \frac{dr^2}{A(r)} + r^2(d\psi + N_\psi dt)^2 \right] + l^2 d\rho^2 + l^2 \cosh^2(\rho - \rho_0)dz^2,$$

with different M 's, j 's, and b 's?

I. Rotating Solution in Einstein-Gauss-Bonnet

II. Thin Shells

III. Preliminary Results

IV. Conclusions

III. Preliminary Results

Extrinsic Curvature Jump

$$[K_{ij} - Kh_{ij} + \alpha Y_{ij}] = -8\pi S_{ij}$$

III. Preliminary Results

Extrinsic Curvature Jump

$$[K_{ij} - Kh_{ij} + \alpha Y_{ij}] = -8\pi S_{ij}$$

Left-hand side: **only $\rho\rho$ entry not 0**

III. Preliminary Results

Extrinsic Curvature Jump

$$[K_{ij} - Kh_{ij} + \alpha Y_{ij}] = -8\pi S_{ij}$$

Left-hand side: **only $\rho\rho$ entry not 0**

Stress-energy Tensor

S_{ij} - dust with pressure p along ρ direction

III. Preliminary Results

Extrinsic Curvature Jump

$$[K_{ij} - Kh_{ij} + \alpha Y_{ij}] = -8\pi S_{ij}$$

Left-hand side: **only $\rho\rho$ entry not 0**

Stress-energy Tensor

S_{ij} - dust with pressure p along ρ direction

Shell's Equation of Motion

$$\ddot{R} = -\frac{8\pi R}{m}(p_R - p)\sqrt{(A_- + \dot{R}^2)(A_+ + \dot{R}^2)}$$

III. Preliminary Results

Vacuum Thin Shells

III. Preliminary Results

Vacuum Thin Shells

- If $S_{ij} = 0$, GR implies $g_- = g_+$

III. Preliminary Results

Vacuum Thin Shells

- If $S_{ij} = 0$, GR implies $g_- = g_+$
- However, in our case:

$$\ddot{R} = -\frac{8\pi R}{m} p_R \sqrt{(A_- + \dot{R}^2)(A_+ + \dot{R}^2)}$$

III. Preliminary Results

Vacuum Thin Shells

- If $S_{ij} = 0$, GR implies $g_- = g_+$
- However, in our case:

$$\ddot{R} = -\frac{8\pi R}{m} p_R \sqrt{(A_- + \dot{R}^2)(A_+ + \dot{R}^2)}$$

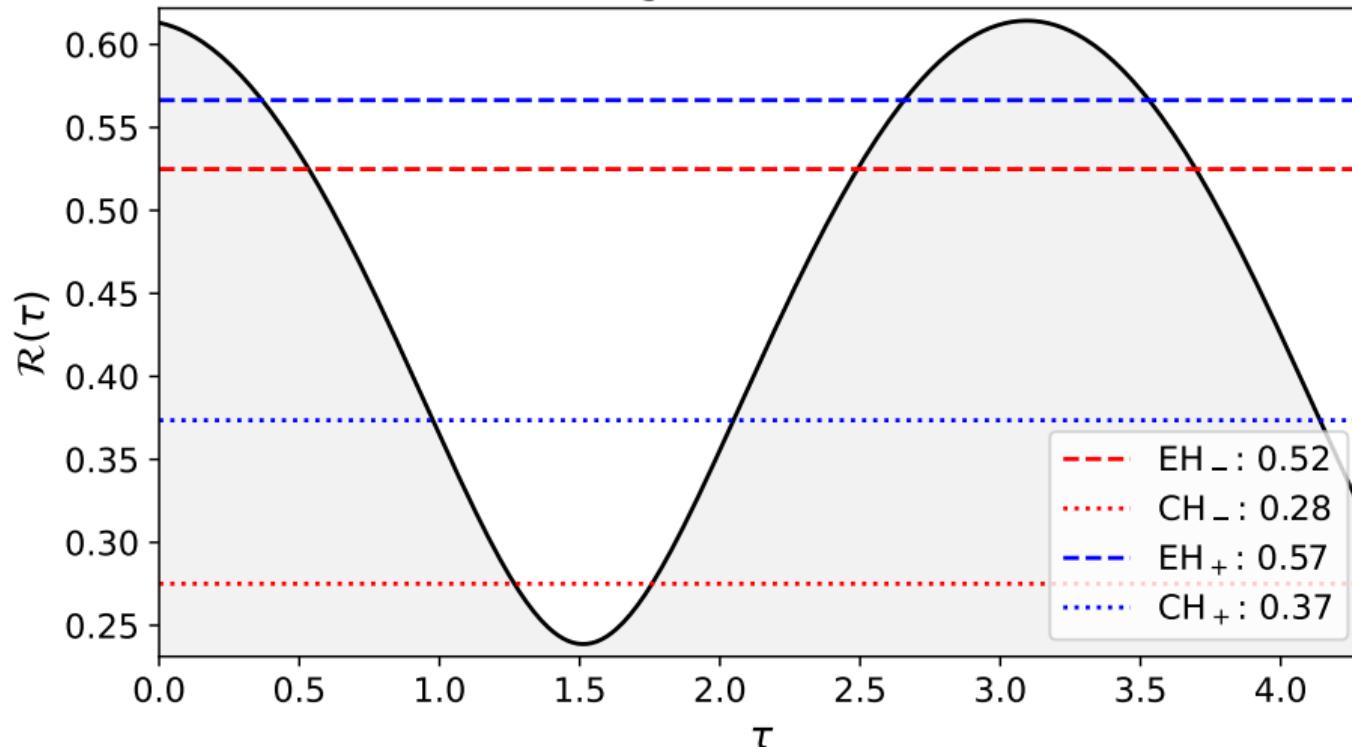
or

$$m = R \left(\sqrt{A_-(R) + \dot{R}^2} - \sqrt{A_+(R) + \dot{R}^2} \right) ,$$

with m constant

III. Preliminary Results

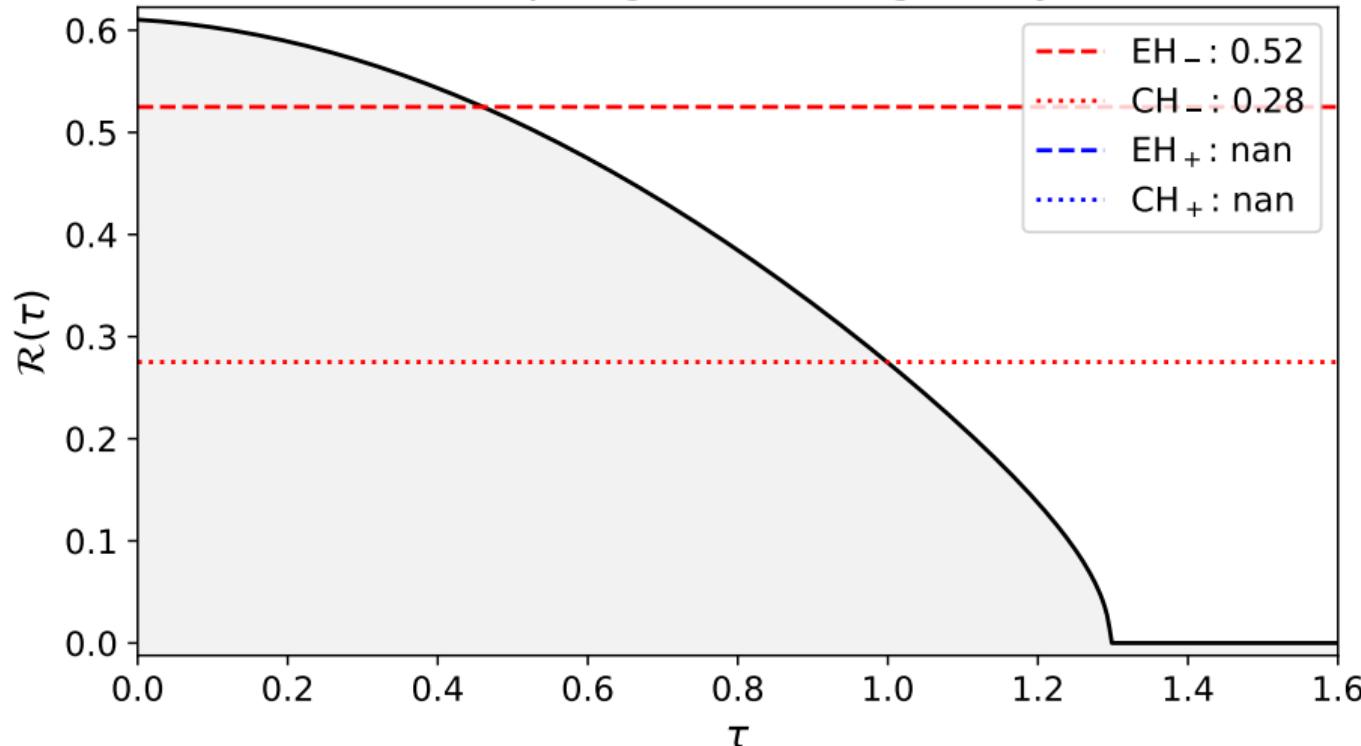
Oscillating Vacuum Thin Shell



Parameters: $M_+ = 0.47$, $j_+ = 0.46$, $M_- = 0.4$, $j_- = 0.38$, $b_\pm = 0$

III. Preliminary Results

Collapsing Naked Singularity



Parameters: $M_+ = 0.47$, $j_+ = 1.0$, $M_- = 0.4$, $j_- = 0.38$, $b_\pm = 0$

I. Rotating Solution in Einstein-Gauss-Bonnet

II. Thin Shells

III. Preliminary Results

IV. Conclusions

IV. Conclusions

IV. Conclusions

- Found rotating thin shells in EGB (Chern-Simons point) ✓

IV. Conclusions

- Found rotating thin shells in EGB (Chern-Simons point) ✓
- Explored vacuum thin shells ✓

IV. Conclusions

- Found rotating thin shells in EGB (Chern-Simons point) ✓
- Explored vacuum thin shells ✓
- Formation of naked singularities ✓

IV. Conclusions

- Found rotating thin shells in EGB (Chern-Simons point) ✓
- Explored vacuum thin shells ✓
- Formation of naked singularities ✓
- Explore the effect of the b parameter **ONGOING**

IV. Conclusions

- Found rotating thin shells in EGB (Chern-Simons point) ✓
- Explored vacuum thin shells ✓
- Formation of naked singularities ✓
- Explore the effect of the b parameter **ONGOING**
- Applying same framework to equally rotating solutions **FUTURE**

IV. Conclusions

- Found rotating thin shells in EGB (Chern-Simons point) ✓
- Explored vacuum thin shells ✓
- Formation of naked singularities ✓
- Explore the effect of the b parameter **ONGOING**
- Applying same framework to equally rotating solutions **FUTURE**
- Soon on **arXiv**

Rotating Thin Shells in Einstein-Gauss-Bonnet Gravity

João D. Álvares ^{1,2,*} Tiago V. Fernandes ^{1,3,†} and Jorge V. Rocha ^{3,1,2,‡}

¹*CENTRA, Departamento de Física do Instituto Superior Técnico (IST),*

Universidade de Lisboa, 1049-001 Lisboa, Portugal

²*Instituto de Telecomunicações - IUL, Avenida das Forças Armadas, 1649-026 Lisboa, Portugal*

³*Departamento de Matemática, ISCTE - Instituto Universitário de Lisboa,*

Avenida das Forças Armadas, 1649-026, Lisboa, Portugal

A rotating solution in Einstein-Gauss-Bonnet gravity with a negative cosmological constant was recently found in the Chern-Simons point. Contrary to the attempts of applying a rotating thin shell in Kerr, here we show a clear and straightforward way to describe the way a rotating thin shell behaves. The inner and outer spacetimes are replicas of the same rotating metric, with different values of mass and angular momenta. We explore the parameter-space possibilities and discuss the mathematical correctness of the standard junction conditions used up until now in the Einstein-Gauss-Bonnet theory, which is still a matter of debate.