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Finding rotating solutions
« 47 years between Schwarzschild and Kerr

« Other rotating solutions found?

- 3D+AdS (BTZ)

- Higher dimensions (Myers-Perry)

- Coupled to non-linear electrodynamics
- etc.
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2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity

dr

2
ds? = 2 cosh?(p) | —A(r)dt? + —— +r2(d + Nydt)? | + 12dp® + % cosh® (p — po)dz?,

A(r)
where

b 52 J
_a_qy b w_ _
Alr)=r"—-M 7“—|_4l7‘27 N 2r2 "
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Reviewing Lovelock Gravity
5D AdS General Relativity

S = /\/—g (R—2A)d°x
Lovelock - Generalization of GR: divergence free, 2nd order EOM. In 5D,
5= / VG(R—2A+a(R?—ARWR,, + R*R,, ) dx

uvpo

5D Lovelock = Einstein-Gauss-Bonnet
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Chern-Simons Point
_ 3
. Set A = "Za

- Example: Boulware-Deser solution
ds?> = —=V2(r)dt?> + V=2(r)dr? + r2dQ?,

with

7“2 ,r,2 \/
V23(r)=1+-——-—4/1
(r) + 4o 4da +

16aM 4A«a
4 3

r
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Chern-Simons Point
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I. Rotating Solution in Einstein-Gauss-Bonnet

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity

d 2
ds? = 12 cosh?(p) | —A(r)dt? + A(T) +r2(dip+ Nydt)? | +12dp? + 2 cosh® (p — py)d=2,
where
b j j
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I. Rotating Solution in Einstein-Gauss-Bonnet

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity
in the Chern-Simons point

d 2
ds? = 12 cosh?(p) | —A(r)dt? + AZT) +r2(dip+ Nydt)? | +12dp? + 2 cosh® (p — py)d=2,
where
b j j
A(r):r2—M—f—|—f4r2, ¢——72T2
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I. Thin Shells

Connecting Spacetimes

- Match induced metric on thin shell
hi; = hi;
- Extrinsic curvature jump. In GR:

+ 5;; + shell stress-energy tensor
- [A] = AT — A~ : jump across shell
- Lovelock: +1 term (Y;;)

)
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Openheimer-Snyder

« Inner metric (g_): dust

« Outer metric (g, ): Schwarzschild

Rotating Openheimer-Snyder?

« No analogy for Kerr yet
- In 5D, 1405.1433: Collapsing thin shells with rotation (J. V. Rocha et. al)

« Inner metric (¢g_): Vacuum
« Outer metric (g, ): Myers-Perry
+ Thin Shell (S;;): Dust
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II. Thin Shells

What if inner and outer spacetimes are:

dr?

2 _ g2 2 _ 2
ds® = [ cosh™(p) | —A(r)dt +A(r)

+r2(dyp + Nydt)?| + 2dp® + 12 cosh® (p — py)dz?

with different M’s, j’s, and b’s?
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III. Preliminary Results

Extrinsic Curvature Jump

Left-hand side: only pp entry not 0

Stress-energy Tensor

S;; - dust with pressure p along p direction

Shell’s Equation of Motion

R=="C - p)y A+ ) (A, + )
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III. Preliminary Results

Vacuum Thin Shells
- If 5;; =0, GR implies g_ = g,

- However, in our case:

. STR : 5
R=—— A_+R?) (A, 4+ R?
o (A + R2)(A, + R2)

or

m=R <\/A,(R) +R2— \/A+(R) +R2) ,

with m constant
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III. Preliminary Results

Oscillating Vacuum Thin Shell
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III. Preliminary Results

Collapsing Naked Singularity
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