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I. Rotating Solution in Einstein-Gauss-Bonnet

Finding rotating solutions

• 47 years between Schwarzschild and Kerr
• Other rotating solutions found?

• 3D+AdS (BTZ)
• Higher dimensions (Myers-Perry)
• Coupled to non-linear electrodynamics
• etc.
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I. Rotating Solution in Einstein-Gauss-Bonnet

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity

𝑑𝑠2 = 𝑙2 cosh2(𝜌) [−𝐴(𝑟)𝑑𝑡2 + 𝑑𝑟2

𝐴(𝑟) + 𝑟2(𝑑𝜓 + 𝑁𝜓𝑑𝑡)2] + 𝑙2𝑑𝜌2 + 𝑙2 cosh2(𝜌 − 𝜌0)𝑑𝑧2 ,

where
𝐴(𝑟) = 𝑟2 − 𝑀 − 𝑏

𝑟 + 𝑗2

4𝑟2 , 𝑁𝜓 = − 𝑗
2𝑟2 .
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I. Rotating Solution in Einstein-Gauss-Bonnet

But there’s a catch
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I. Rotating Solution in Einstein-Gauss-Bonnet

Reviewing Lovelock Gravity

5D AdS General Relativity

𝑆 = ∫ √−𝑔 (𝑅 − 2Λ) 𝑑5𝑥

Lovelock - Generalization of GR: divergence free, 2nd order EOM. In 5D,

𝑆 = ∫ √−𝑔 (𝑅 − 2Λ + 𝛼 (𝑅2 − 4𝑅𝜇𝜈𝑅𝜇𝜈 + 𝑅𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌𝜎)) 𝑑5𝑥

5D Lovelock = Einstein-Gauss-Bonnet
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I. Rotating Solution in Einstein-Gauss-Bonnet

Still no rotating solution in EGB

Except for a specific point

8 / 22



I. Rotating Solution in Einstein-Gauss-Bonnet

Still no rotating solution in EGB
Except for a specific point

8 / 22



I. Rotating Solution in Einstein-Gauss-Bonnet

Chern-Simons Point
• Set Λ = − 3

4𝛼

• Example: Boulware-Deser solution

𝑑𝑠2 = −𝑉 2(𝑟)𝑑𝑡2 + 𝑉 −2(𝑟)𝑑𝑟2 + 𝑟2𝑑Ω2 ,

with

𝑉 2(𝑟) = 1 + 𝑟2

4𝛼 − 𝑟2

4𝛼
√1 + 16𝛼𝑀

𝑟4 + 4Λ𝛼
3 .
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Schwarzschild:
Λ = 0 ∶ lim

𝛼→0
𝑉 2 = 1 − 2𝑀

𝑟2

Schwarzschild-AdS:

Λ ≠ 0 ∶ lim
𝛼→0

𝑉 2 = 1 − 2𝑀
𝑟2 − Λ

8 𝑟2

Chern-Simons:
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4𝛼 ∶ 𝑉 (𝑟) = 1 − √𝑀

𝛼 + 𝑟2
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I. Rotating Solution in Einstein-Gauss-Bonnet

2404.04691: Rotating BH in 5D Einstein-Gauss-Bonnet gravity

in the Chern-Simons point

𝑑𝑠2 = 𝑙2 cosh2(𝜌) [−𝐴(𝑟)𝑑𝑡2 + 𝑑𝑟2

𝐴(𝑟) + 𝑟2(𝑑𝜓 + 𝑁𝜓𝑑𝑡)2] + 𝑙2𝑑𝜌2 + 𝑙2 cosh2(𝜌 − 𝜌0)𝑑𝑧2 ,
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II. Thin Shells

n

Thin Shell

g

g +

Connecting Spacetimes

• Match induced metric on thin shell

ℎ−
𝑖𝑗 = ℎ+

𝑖𝑗

• Extrinsic curvature jump. In GR:

[𝐾𝑖𝑗 − 𝐾ℎ𝑖𝑗] = −8𝜋𝑆𝑖𝑗

• 𝑆𝑖𝑗 : shell stress-energy tensor
• [𝐴] = 𝐴+ − 𝐴− : jump across shell
• Lovelock: +1 term (𝑌𝑖𝑗)
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II. Thin Shells

Openheimer-Snyder
• Inner metric (𝑔−): dust
• Outer metric (𝑔+): Schwarzschild

Rotating Openheimer-Snyder?

• No analogy for Kerr yet

• In 5D, 1405.1433: Collapsing thin shells with rotation (J. V. Rocha et. al)
• Inner metric (𝑔−): Vacuum
• Outer metric (𝑔+): Myers-Perry
• Thin Shell (𝑆𝑖𝑗): Dust
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II. Thin Shells

What if inner and outer spacetimes are:

𝑑𝑠2 = 𝑙2 cosh2(𝜌) [−𝐴(𝑟)𝑑𝑡2 + 𝑑𝑟2

𝐴(𝑟) + 𝑟2(𝑑𝜓 + 𝑁𝜓𝑑𝑡)2] + 𝑙2𝑑𝜌2 + 𝑙2 cosh2(𝜌 − 𝜌0)𝑑𝑧2 ,

with different 𝑀 ’s, 𝑗’s, and 𝑏’s?
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III. Preliminary Results

Extrinsic Curvature Jump

[𝐾𝑖𝑗 − 𝐾ℎ𝑖𝑗 + 𝛼𝑌𝑖𝑗] = −8𝜋𝑆𝑖𝑗

Left-hand side: only 𝜌𝜌 entry not 0

Stress-energy Tensor
𝑆𝑖𝑗 - dust with pressure 𝑝 along 𝜌 direction

Shell’s Equation of Motion

𝑅̈ = −8𝜋𝑅
𝑚 (𝑝𝑅 − 𝑝)√(𝐴− + 𝑅̇2)(𝐴+ + 𝑅̇2)
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III. Preliminary Results

Vacuum Thin Shells

• If 𝑆𝑖𝑗 = 0, GR implies 𝑔− = 𝑔+
• However, in our case:

𝑅̈ = −8𝜋𝑅
𝑚 𝑝𝑅√(𝐴− + 𝑅̇2)(𝐴+ + 𝑅̇2)

or
𝑚 = 𝑅 (√𝐴−(𝑅) + 𝑅̇2 − √𝐴+(𝑅) + 𝑅̇2) ,

with 𝑚 constant
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A rotating solution in Einstein-Gauss-Bonnet gravity with a negative cosmological constant was
recently found in the Chern-Simons point. Contrary to the attempts of applying a rotating thin
shell in Kerr, here we show a clear and straightforward way to describe the way a rotating thin shell
behaves. The inner and outer spacetimes are replicas of the same rotating metric, with different
values of mass and angular momenta. We explore the parameter-space possibilities and discuss the
mathematical correctness of the standard junction conditions used up until now in the Einstein-
Gauss-Bonnet theory, which is still a matter of debate.

I. INTRODUCTION

A. Rotating Solutions

It took 47 years between finding the black hole solu-
tion and showing that black holes can rotate. The black
hole solution was found by Karl Schwarschild in 1916
in Ref. [1], and its rotating version was found by Roy
Kerr in 1963 in Ref. [2]. The act of finding the rotating
solution has become one of the most famous stories in
the bigger story of GR [3], and naturally the search for
other types of rotating solutions has been of major inter-
est. This search has gathered some successes in GR and
also in other alternative theories of gravity. Examples
of rotating solutions in GR show up in different dimen-
sions. In a three-dimensional world, GR does not allow
the existence of black holes unless we add a negative cos-
mological constant, and these black holes are known as
BTZ black holes [4]. The BTZ black holes have also
their corresponding rotating solutions [5]. If we instead
go beyond four dimensions, rotating black holes are called
Myers-Perry black holes [6]. In equal or higher than 5 di-
mensions, there are also other types of rotating solutions,
such as black rings, but we will not delve into those more
exotic examples [7, 8]. Almost all the cases mentioned up
until here can also be extended to have electromagnetic
charge, producing an even more general family of black
holes [9–13]. Assuming non-linear electrodynamics, regu-
lar rotating solutions of black holes have also been found
in Ref. [14], and the same goes for a universe filled with
quintessence [15]. More recently, there has been new ad-
dition to the known rotating solutions family [16], in one
of the most famous alternative theories of GR, Lovelock
gravity [17].
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B. Lovelock Gravity

Lovelock gravity is based on a simple idea: what is
the most general divergence-free tensor constructed solely
from contractions of the Riemann tensor, Rαβσδ, whose
equations of motion produce second-order equations of
motion? In 4D, that answer is the Einstein tensor, Gαβ

Gαβ = Rαβ − 1

2
gαβR , (1)

where Rαβ = Rσασβ is the Ricci tensor, gαβ is the metric,
and R = Rαα is the Ricci scalar. However, behind the
Einstein tensor, we actually have an infinite sum of terms,
that trivially vanish in 4D. This sum of terms is easily
written if we look at the Lagrangian of the theory:

L =
√
−g

t∑
n=0

αnR
n , (2)

where t represents the number of terms being taken into
account, and αn are scalar constants. Rn is defined as

Rn =
1

2n
δµ1ν1...µnνn
α1β1...αnβn

n∏
r=1

Rαrβr
µrνr . (3)

For a review of Lovelock gravity, we redirect the inter-
ested reader to Ref. [18]. The first term of the sum in (2)
corresponds to α0, i.e., a cosmological constant, while the
second term is the Einstein-Hilbert term, and the third
one is known as the Gauss-Bonnet term. We can consider
this third term as a first-order correction to GR when in a
higher dimensional spacetime, i.e., n > 4. As a matter of
fact, for n = 5 and n = 6, these three terms are the only
non-vanishing ones, making their sum the most general
Lovelock Lagrangian possible in these dimensions. Tak-
ing the example of n = 5, the Lagrangian can be written
as,

L = R− 2Λ + α
(
R2 − 4Rαβαβ +RαβµνR

αβµν
)
. (4)
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recently found in the Chern-Simons point. Contrary to the attempts of applying a rotating thin
shell in Kerr, here we show a clear and straightforward way to describe the way a rotating thin shell
behaves. The inner and outer spacetimes are replicas of the same rotating metric, with different
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I. INTRODUCTION

A. Rotating Solutions

It took 47 years between finding the black hole solu-
tion and showing that black holes can rotate. The black
hole solution was found by Karl Schwarschild in 1916
in Ref. [1], and its rotating version was found by Roy
Kerr in 1963 in Ref. [2]. The act of finding the rotating
solution has become one of the most famous stories in
the bigger story of GR [3], and naturally the search for
other types of rotating solutions has been of major inter-
est. This search has gathered some successes in GR and
also in other alternative theories of gravity. Examples
of rotating solutions in GR show up in different dimen-
sions. In a three-dimensional world, GR does not allow
the existence of black holes unless we add a negative cos-
mological constant, and these black holes are known as
BTZ black holes [4]. The BTZ black holes have also
their corresponding rotating solutions [5]. If we instead
go beyond four dimensions, rotating black holes are called
Myers-Perry black holes [6]. In equal or higher than 5 di-
mensions, there are also other types of rotating solutions,
such as black rings, but we will not delve into those more
exotic examples [7, 8]. Almost all the cases mentioned up
until here can also be extended to have electromagnetic
charge, producing an even more general family of black
holes [9–13]. Assuming non-linear electrodynamics, regu-
lar rotating solutions of black holes have also been found
in Ref. [14], and the same goes for a universe filled with
quintessence [15]. More recently, there has been new ad-
dition to the known rotating solutions family [16], in one
of the most famous alternative theories of GR, Lovelock
gravity [17].
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B. Lovelock Gravity

Lovelock gravity is based on a simple idea: what is
the most general divergence-free tensor constructed solely
from contractions of the Riemann tensor, Rαβσδ, whose
equations of motion produce second-order equations of
motion? In 4D, that answer is the Einstein tensor, Gαβ

Gαβ = Rαβ − 1

2
gαβR , (1)

where Rαβ = Rσασβ is the Ricci tensor, gαβ is the metric,
and R = Rαα is the Ricci scalar. However, behind the
Einstein tensor, we actually have an infinite sum of terms,
that trivially vanish in 4D. This sum of terms is easily
written if we look at the Lagrangian of the theory:

L =
√
−g

t∑
n=0

αnR
n , (2)

where t represents the number of terms being taken into
account, and αn are scalar constants. Rn is defined as

Rn =
1

2n
δµ1ν1...µnνn
α1β1...αnβn

n∏
r=1

Rαrβr
µrνr . (3)

For a review of Lovelock gravity, we redirect the inter-
ested reader to Ref. [18]. The first term of the sum in (2)
corresponds to α0, i.e., a cosmological constant, while the
second term is the Einstein-Hilbert term, and the third
one is known as the Gauss-Bonnet term. We can consider
this third term as a first-order correction to GR when in a
higher dimensional spacetime, i.e., n > 4. As a matter of
fact, for n = 5 and n = 6, these three terms are the only
non-vanishing ones, making their sum the most general
Lovelock Lagrangian possible in these dimensions. Tak-
ing the example of n = 5, the Lagrangian can be written
as,

L = R− 2Λ + α
(
R2 − 4Rαβαβ +RαβµνR

αβµν
)
. (4)
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