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Method

MSMBH
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Figure: Adapted from
[Fragione and Bromberg, 2019].

Place the binary at apocentre of S2’s
orbit
[GRAVITY Collaboration et al., 2023].

Define binary system: orbital plane,
mass ratio.

Initial conditions: Monte-Carlo
simulation with uniform distributions.

Evolve system using N-body code
TidyMESS with first Post-Newtonian
correction
[Boekholt and Correia, 2023].
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Results: Orbital Period

Figure: Distribution of surviving binary orbital periods.

Binaries with P > 100 days
are disrupted.

Shorter period binaries
survive preferentially.
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Results: Eccentricity

Figure: Distribution of surviving binary orbital
eccentricities.

Binaries with e > 0.8 are
disrupted.

Circular binaries survive the
most.

Eccentricities are limited by
the Roche limit.
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Results: Mutual Inclination

Figure: Schematic representation of the system and its associated angles, adapted from
[Naoz, 2016].

Binaries with i ∼ 90◦ are
disrupted by the Kozai-Lidov
mechanism.

Surviving binaries with
i ∼ 90◦ have shorter orbital
periods.
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Results: Mass Ratios

Figure: Distribution of surviving binaries’ mass ratios.

Binaries are disrupted
uniformly.

Undetected binaries favour
low mass ratios, consistent
with observational limits
[Chu et al., 2018].

R. P. Silva, A. C. M. Correia, T. Boekholt, P. Garcia 7 / 11



Results: Mass Ratios

Figure: Distribution of surviving binaries’ mass ratios.

Binaries are disrupted
uniformly.

Undetected binaries favour
low mass ratios, consistent
with observational limits
[Chu et al., 2018].

R. P. Silva, A. C. M. Correia, T. Boekholt, P. Garcia 7 / 11



Results: Mass Ratios

Figure: Distribution of surviving binaries’ mass ratios.

Binaries are disrupted
uniformly.

Undetected binaries favour
low mass ratios, consistent
with observational limits
[Chu et al., 2018].

R. P. Silva, A. C. M. Correia, T. Boekholt, P. Garcia 7 / 11



Conclusions

S2 binary constraints:
Orbital period < 100 days
Eccentricity < 0.8

Undetected binaries favour low mass ratios.

Probability of an undetected companion: 4.3%.

Dynamical constraints on the S2 (S0-2) star possible companions

Thank you for your attention!
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B., Le Bouquin, J.-B., Léna, P., Lippa, M., Lenzen, R., Mérand, A., Müler, E.,
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Mutual Inclination

Figure: Schematic representation of the system and its
associated angles adapted from [Naoz, 2016].
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Kozai-Lidov Mechanism

The Kozai-Lidov Hamiltonian may be written as
[Lee and Peale, 2003, Farago and Laskar, 2010, Morais and Correia, 2012]:

HKL = −GmAm•

(
1

rA•
− 1

r•

)
− GmBm•

(
1

rB•
− 1

r•

)
.

Performing the average over both orbits, we may write:

H̄KL ≡ ⟨HKL⟩M•,M ∝

[(
2 + 3e2

)(
3 cos2 i − 1

)
+ 15e2 sin2 i cos (2ω)

]
,

Momentum Conjugate Momentum
M L = β

√
µa

M• L• = β•
√
µ•a•

ω L
√
1− e2

ω• L•
√

1− e2•
Ω G cos (i)
Ω• G• cos (i•)

Table: Delaunay variables (action-angle variables) for the triple system
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Kozai-Lidov Mechanism

Then, using action-angle variables one obtains:

L̇ =
dH̄KL

dM
= 0 ⇐⇒ L = const. ⇐⇒ a = const. ,

L̇• =
dH̄KL

dM•
= 0 ⇐⇒ L• = const. ⇐⇒ a• = const. .

Additionally, H̄KL does not depend on ω•, hence:

Ġ• =
dH̄KL

dG•
= 0 ⇐⇒ G• = const. ⇐⇒ e• = const. .
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Kozai-Lidov Mechanism

Finally, given that G 2
TOT = G 2 + G 2

• + 2GG• cos(i) = const., G• = const. and G• ≫ G we
have that: (

1− e2
)
cos (i) ≈ const.

Primary star (S2)Secondary star

Perturbing body

Figure: Diagram with a binary being perturbed by a massive distant body with Kozai-Lidov
oscillations depicted adapted from Konstantin Batygin.
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https://www.planetary.org/space-images/kozai-lidov-cycles

