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INTRODUCTION

=> Can diffusion models reach the same performance as Monte Carlo methods
to generate samples from physical systems?

=> Do diffusion models “react” to the phase transition as naive Monte Carlo
methods do?

—=> How much data do we need to train good models?

We answer these questions for the 2D Ising Model.

Why the 2D Ising Model? - Why Diffusion Models?
e Extensive amount of analyticaland :: e Scale well with high-dimensional
numerical results. - data.
e In 2D has a phase transition. . - e Fixed computational cost of
e Usual Monte Carlo methods suffer : : generation, unlike Monte Carlo
from a critical slowdown near the ~ : : methods. :
phase transition. . © e State of the art in image generation :
o tasks. :

THE 2D ISING SYSTEM

A 2D grid of LxL spins (o) at temperature T, which can be up (+1) or down (-1).

Given a configuration o :

1. Probability
P(3) = %exp( k;TH(&’))
2. Magnetization

M(o) = )_; o
3. Energy

H(o)=—-J). ;. 0i0;+h) o

Temperature

Magnetization

Figure. Samples of the 2D Ising Model at different temperatures. Black is up, blue is down. In
red, how the magnetization changes with temperature. The phase transition happens at the
critical temperature T, = 2.27.

DIFFUSION MODELS

e Generative models that can build samples from noise.
e \We progressively add noise to the training data and train a neural network
(NN) that learns how to denoise samples.

Fixed forward diffusion process

Data Noise
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e Implementation works for discrete state spaces, like the Ising model, instead
of the usual continuous state space ['l.
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METHODOLOGY

1. Neural Network Architectures: U-Net Architecture
o U-Net, a convolutional NN!21. A A 7 AN A 7
o Fully Connected NNs where | | --------------- I | I

every neuron is connected to
l T 40x40

every neuron of the next layer. 4

5
5 o
o 5 20%20 20%20
= o
10x10
- =) Residual Connection % *Max Pool 2x2
=3 Conv 3x3, ReLU f ConvTranspose2D

Fully Connected NN

EMD measures how much and how far
probability mass needs to be transported to
transform one distribution into the other

il

Distribution 2

2. Data Evaluation: Diffusion
models’ loss is a bad evaluation
metric. So we measure distance
between energy pdfs using the
Earth Mover’s Distance (EMD). — -

RESULTS

e At all temperatures, both networks types are able to replicate the
magnetization distribution.

e However, the fully connected network fails to replicate the energy
distribution (even if we increase its parameters).
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Figure. Magnetization and Energy distributions for the fully connected network.

e U-Net network can generate samples with similar EMD as the ones from
Monte Carlo methods, if Nsamples>1000, as seen below.

e Learning gets harder as the temperature increases, and not only near the
phase transition.

e At higher temperatures, there is no discernible pattern in the data, making it
harder to predict noise.

Energy vs Number of samples for different Temperatures for the 40x40 Ising
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FUTURE WORK

e Explore other noising schedules, that instead of converging to the uniform
distribution, converge to a single point.

e Train a conditioned diffusion model, which accepts the temperature as an
input, outputting a sample of the Ising model at that temperature. See if the
phase transition is correctly modeled.
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