# Development of a LWFA gas target for fine electron injection control

D. Lemos <sup>1\*</sup>, N. C. Lopes <sup>1</sup>, T. Silva <sup>1</sup>, B. Malaca

<sup>1</sup> GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal











#### **Background**

- → Ultimate goal of LWFA
  - Produce high-quality particle beams tailored to specific applications with reproducibility at  $\geq 10 \, Hz$
- Relevant particle **beam parameters**:



- → State of the art targets:
  - Gas Jets
  - Discharge Cells

#### **Final Goal**



#### **Density Profile**

Reliable and tunable injection by density down-ramp scheme [1].

- Density step controls beam charge
- Length of the 2nd plateau controls beam **energy**
- Baseline density matched to laser parameters



#### **Gas Target Design**

To achieve the desired density profile (N. Lopes):

- 2 free parameters to vary density of a gas
- Pressure fixed to avoid undesired flow in the sharp gradient (injection) region.
  - The gas is injected from the top using a fast valve actuation time ~ 10 ms
  - Cycle time controls the pressure of the injected gas
  - This is the control on the baseline density  $-n_0$
- 2 chambers with **controlled temperature** but **thermally isolated** from each other
  - The temperature difference controls the density step  $-\Delta n$
  - Separated by small distance 20 µm to ensure sharp density gradient
- 2 sliding cylinders
  - Allow for effective length control of the chambers  $-L_1$  and  $L_2$

# A novel tunable gas target for an electron LWFA





# **Research Objectives**

- Open√FOAM 1) Validate gas target design through CFD simulations **\overline{\Omega}**
- 2) Simulation based optimization of the density profile using a BO approach 🗹 [4] Osiris
- 3) Test target in an **experimental** setting

See it in action!



## **Future Directions**

- Bright, hard and tunable Betatron X-rays for low-dose applications
- High intensity/rep-rate/quality GeV electron beams

### **References & Acknowledgements**

[1] Ekerfelt, H., Hansson, M., Gallardo González, I. et al. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration. Sci Rep 7, 12229 (2017)

[2] Shalloo, R.J., Dann, S.J.D., Gruse, JN. et al. Automation and control of laser wakefield accelerators using Bayesian optimization. Nat Commun 11, 6355 (2020) [3] F. Irshad, S. Karsch and A. Döpp, Multi-objective and multi-fidelity Bayesian optimization of laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)

[4] R. A. Fonseca et al., OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators, Lecture Notes in Computer Science, vol 2331. Springer (2002)

This work is supported by Fundação para a Ciência e Tecnologia (FCT) through the projects 2022.06871.PTDC and 2024.07091.CPCA