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Tremendous progress has been made in controlling and manipulating 
individual quantum systems (e.g. superconducting qubits, ultracold atoms)
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Keldysh path-integral approach [3]

Dissipative Sachdev–Ye–Kitaev (SYK) model

Solutions of the SDE equations

System:  Majorana fermions    N χi

H = ∑
i<j<k<l

Jijkl χi χj χk χl

For  (Markovian limit), the solutions are known [4, 5]ν = 0
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Jijkl

The Keldysh formalism is a powerful tool for quantum systems out-of-equilibrium

However, no quantum system is truly isolated: interactions with the 
environment drive them towards a steady state with stationary properties

K<(ω) = (1 − e−ω2/Λ2)
ν/2

Schwinger-Dyson Equations

σ−(ω) =
μ
π

K<(ω) +
J2

4
(ρ ⋆ ρ ⋆ ρ)(ω)

ρ−(ω) =
σ−(ω)

(πσH(ω) + ω)2 + (πσ−(ω))2

How do strongly correlated 
open quantum systems relax to 

the steady state?

How does this relaxation 
change when the system 

retains memory?

{χi, χj} = δij

χ†
i = χi

ttf
−∞

We can write a mean-field action for the collective field G(z, z′￼) = −
i
N ∑

i

ai(z)ai(z′￼)

Taking the saddle point ( ), we have:N → ∞

ω

Λ

|ω |ν

K<(ω)
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⏟
⟨J2

ijkl⟩ =
6J2
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An artist’s view of our model

J

μ

K<(ω)

Wi = μ χi

Hamiltonian:

Jump operators:

Bath density of states:

We explore these questions in a dissipative SYK model with a non-Markovian 
bath (i.e., that retains memory) and determine its relaxation properties

The SYK model is a zero dimensional model of strongly interacting fermions, 
widely used as a tractable model for strongly correlated quantum matter [1,2]

We numerically solve the equations on a frequency grid, by iterating until a 

fixed point is reached

For  (non-Markovian regime), we can have slow relaxationν > 0

J = 1
FTZ = Tr[ρtf] = ∫ ∏

i

𝒟ai exp i∫C
dz

1
2 ∑

i

ai(z)i∂zai(z) − i∫C
dz ∑

i<j<k<l

Jijklai(z)aj(z)ak(z)al(z)

+∫ dzdz′￼μK(z, z′￼)∑
i

ai(z)ai(z′￼))Propagator

Coherent evolution

Non-Markovian dissipation

We studied the relaxation dynamics of a dissipative SYK model with a non-
Markovian bath

How does the relaxation 
depend on the system 

parameters?

Are there any dynamical phase 
transition? If so, what is the 

phase diagram?

Is there some limit where can 
make analytical predictions?

K<(ω) ≈
ω
Λ

ν
K<(ω) ≈ 1

ω ≪ Λ ω ≫ Λ

Using Keldysh formalism, we could numerically study the thermodynamic 
limit of the system

We found that the non-Markovianity can induce a slow relaxation (i.e., 
power-law instead of exponential)

Introduction

CONCLUSIONS OUTLOOK

FT
J/Λ = μ /Λ = 0.1

Studying many-body systems is inherently hard (non-perturbative and 
exponential complexity)
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