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Conclusions:
• Given the sloppy nature of the underlying physical model, the hierarchical optimization method 

provides a significant performance improvement when compared to the baseline methods. 

• When a surrogate model is necessary, our progressive denoising autoencoder (PCDAE) is a 
powerful alternative. It outperforms a PINN direct predictor on the multi-output regression task 
in low-data regime (~3000 samples)

Perspectives:
1. Validate the generality and robustness of the hierarchical optimization method by applying it to 

other kinetics schemes;
2. Constrained Surrogate Modeling: Enhance the PCDAE by imposing physical constraints (e.g., 

mass conservation) at inference time.
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Model-free Optimization for Fast Simulators

Optimizing parameters of interest in the O and CO kinetic scheme [1] is challenging due to the 
model’s sloppiness.

We define the loss function as !Φ 𝜃 = ∑! 𝑟!", where	𝑖	iterates over the dataset and the residuals 
are given by 𝑟! =

#!$%#!
#!

. The 𝛾! represents the experimental measurement and *𝛾! the predicted 
value. The vector 𝜃 concatenates all the parameters to be optimized.

As shown in Fig. a), the parameter sensitivities span many orders of magnitude. This mixture 
of stiff (sensitive) and sloppy (insensitive) directions makes optimization with standard algorithms 
challenging [2].

Surrogate-Model for Slow Simulators

• Fig. a) Superior Accuracy: our PCDAE model outperforms the PINN with Projection [6] 
baseline, achieving a lower test RMSE across all model sizes. The #𝑝𝑎𝑟𝑎𝑚𝑠 corresponds to 
the number of learnable weights in each neural net.

• Fig. b) Importance of Noise: high performance requires training with a large maximum noise 
level (𝜎&'( ≥ 0.9), reinforcing the contrastive nature of our method.

Our Progressive Conditional Denoising Autoencoder (PCDAE) replaces a slow simulator, 
overcoming regression model limits by implicitly learning data geometry and utilizing robust, 
conditional contrastive learning to reconstruct clean samples from noisy versions [3,4]

• Fig. a) shows the eigenvalue spectrum |𝜆!|  of the model's Gauss-Newton Hessian, 𝐻)* ≈
∇"!Φ 𝜃 , as a function of the eigendirections	𝑉!. The 𝐻)* is expressed as 𝐻)* = 𝑉ΛV+, where 
Λ = diag(𝜆,, … , 𝜆-). 

• The eigenvalues span many orders of magnitude, confirming the model's sloppy nature. The 
large eigenvalues correspond to stiff directions, while the tiny eigenvalues correspond to 
sloppy directions that are challenging for standard optimization methods to resolve.

• Fig. b) compares the convergence of the loss function (!Φ) versus iterations for 
our Hierarchical method (red) against three baselines, showing it converges faster and for a 
better solution when compared to the baselines.

To solve this, our hierarchical algorithm (see scheme) iteratively partitions parameters 
into stiff and sloppy subspaces. It then optimizes each subspace in sequence, efficiently 
navigating the complex landscape to find the final parameters 𝜃+.

Training Stage: Learning to Denoise

The model 𝑔. is trained to reconstruct the true chemical densities 𝑦 from a noisy version G𝑦, 
conditioned on experimental inputs 𝑥.
Noise is added via G𝑦~	𝑞/ ⋅ 𝑦 ,	where the noise level 𝜎 is randomly sampled from a 
distribution 𝑝/ during training. The objective is to minimize the loss:

with 𝑧+ = 𝑦	, 𝑥 .
By being trained to recover clean samples from noisy inputs, the network 𝑔. is compelled to learn 
the geometry and correlations of the data manifold implicitly [3].

Inference Stage: Iterative Refinement

To generate a prediction, we start with pure noise and denoise it iteratively. Following a 
schedule of decreasing noise levels, {𝜎0}, from 𝜎&'( ≫ 0 to 𝜎&!- ≈ 0, our model 𝑔. guides the 
prediction out of the noise. The refinement update is given by:

With         

Dataset

The dataset was generated using LoKI-B+C [5], obtained from [6], and corresponds to a 
deterministic system that predicts densities of chemical species, 𝑦 (17 vars), based on the input 
experimental conditions for the plasma system, 𝑥 (3 𝑣𝑎𝑟𝑠). It is composed by 3000 samples
𝑥, 𝑦 .

Results

This proves the model reliably finds a unique solution regardless of the random starting point, 
an attractive features as we are dealing with a deterministic dataset.

The following figures show the evolution of absolute value residuals, with each line representing 
a different 𝑦 component, starting from a set of random initial guesses 𝑦.

• Fig. a) Stable Mean: the mean of each 𝑦 component converges to a stable solution near the 
ground truth;

• Fig. b) Variance Collapse: the standard deviations of each 𝑦 component collapse to (almost) 
zero.

Introduction
Optimizing plasma-surface kinetics is a critical challenge in material science, often hindered by 
computationally expensive simulations. Moreover, a key challenge is in the uncertainty of model 
parameters, such as energy barriers, for some chemical reactions, which are not well defined in 
the literature [1]. Therefore, this work employs a data-driven optimization approach to improve the 
physical models.

To overcome these bottlenecks, we introduce a dual-strategy approach tailored to different 
simulation regimes:
• For fast simulators (it takes less than ~10 secs to run): a hierarchical optimization algorithm 

that efficiently navigates complex and sloppy parameter landscapes [2];
• For slow simulators (it takes more than ~500 secs to run): a ML-accelerated framework using 

a Progressive Conditional Denoising Autoencoder (PCDAE) as an accurate surrogate model [3];

This work demonstrates that both strategies provide significant efficiency gains, accelerating the 
discovery of optimal plasma processing conditions.


