# Resolving Spacetime Evolution of QCD Jets Using Energy-Energy Correlators

Lara Branco (LEFT)

Supervisor: Liliana Apolinário





LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

#### **Motivation**

High-energy hadronic collisions allow us to explore Quantum Chromodynamics (QCD). In proton-proton (pp) collisions, energetic quarks and gluons shower into jets, which allow the study of the transition from perturbative to non-perturbative regimes, revealing how partons ultimately confine into hadrons.



In heavy-ion collisions, these jets traverse the Quark-Gluon Plasma (QGP), where their structure is modified - a phenomenon known as **jet** quenching.

This work: we focus on pp collisions (vacuum) to establish a solid baseline for future studies in heavy-ion environments.

**Figure 1:** Hard-scattering of **partons** in a pp collision and **parton shower**, followed by **hadronization** and hadron decay, with **jet** formation.

## **Formation Time**

The formation time of an **emission,**  $\tau_{\text{form}}$ , is the time it takes to behave as an independent source of radiation.

$$\tau_{form} \approx \frac{1}{2Ez(1-z)(1-\cos\theta_{1,2})}$$



The distribution separates into **three regimes**: early parton radiation at short times, late hadronic decays at long times, and a consistent transition around  $\tau_{\text{form}} \approx 1 \text{ fm/c}$ , which reflects the characteristic hadronization timescale (largely independent of the jet transverse momentum, p<sub>T</sub>), [1, 2].

Figure 2: Statistical distribution of the formation time for two sets of jet pt configurations

## **Energy-Energy Correlator (EEC)**

## **Angular EEC**

 Measures how energy is distributed at different angular scales within a jet

$$\frac{d\Sigma}{d\log(\Delta R)} = \frac{1}{N_{pairs}} \sum_{i \neq j} E_i E_j \delta(\Delta R - \Delta R_{ij})$$

 Shows the transition between perturbative splittings and hadronization regime [3]

#### **Temporal EEC**

- Proposed redefinition of EEC in terms of T\_form between particle pairs
- Reveals characteristic timescales of jet fragmentation





→ Together they give a **space-time** interpretation of **jet substructure evolution**!

Figure 3: a) Angular EEC distribution for leading and sub-leading jets in different jet pt configurations **b)**  $\tau_{\text{form}}$  EEC distribution for leading jets in different jet p<sub>T</sub> configurations

## $\tau_{\text{form}}$ EEC



- Universal pQCD up to ~I fm/c
- Clear transition!
- Non-perturbative power-law fall-off:  $\log(y) = -\alpha \log(\tau_{form})$



| Leading Jet              | Sub-leading Jet          |
|--------------------------|--------------------------|
| $\alpha = 1.03 \pm 0.02$ | $\alpha = 1.09 \pm 0.01$ |

**Figure 4: a)**  $\tau_{\text{form}}$  EEC distribution for leading and sub-leading jets **b)** Figure 4.a) in logarithmic scale with fitted lines of the power-law scaling

## **Flavour Dependence**







Non-perturbative scaling independent of p<sub>T</sub> and flavor!

**Figure 5: a)**  $\tau_{\text{form}}$  EEC distribution for different flavour tagged events **b)** Figure 5.a) in logarithmic scale with fitted lines of the power-law scaling

## **Conclusions & Future work**

Both angular and temporal EEC show the expected  $\hat{p}_T$  dependent shifts

The proposed temporal EEC reveals a **clearer transition** at  $\tau_{\text{form}} \approx 1$  fm/c than the traditional angular correlator

The results show universality of non-perturbative power-law scaling with  $\alpha \approx 1.03 \pm 0.02$ , independent of jet flavour or pt

This new observable establishes a baseline for future jet quenching studies and is a valuable tool for testing hadronization models

## References

[1] L. Apolinário, A. Cordeiro, K. Zapp, Eur. Phys. J. C 81 (2021) 6,561

[2] L. Apolinário, P. Guerrero-Rodriguez, K. Zapp, Eur.Phys.J.C 84 (2024) 7, 672

[3] C. Andrés, F. Dominguez, R. Elayavalli, J. Holguin, C. Marquet, Phys.Rev.Lett. I 30 (2023) 26, 26230 I