
Methodology
• Reformulate classical option pricing models such as 

Black–Scholes and Merton–Garman through the lens of 
quantum mechanics, using path integrals and Hamiltonian 
operators to define a new pricing framework1.

• Develop numerical algorithms to solve the reformulated 
problem and study the behaviour of the resulting 
equations[1,2].

• Compare the quantum-inspired approach with standard 
Monte Carlo (Euler) methods to benchmark performance.
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Introduction
• Explores option pricing  through 

the lens of quantum mechanics.

• Investigates assesses the 
viability of this framework for 
modelling option markets 
beyond classical approaches.

• Demonstrates how these 
methods can be developed into 
real-world application.

Results
• The quantum-inspired reformulation successfully 

reproduces option prices and implied volatility curves 
comparable to classical model.

• Benchmarking showed that for Monte Carlo averaged 0.6 
seconds and 12 800 kB of memory per run, while the path 
integral method required 3.6 seconds and 64.6 kB.

• Market calibration by minimizing RMSE and WRMSE, 
requiring several hours. Introducing a neural network push-
forward reduced calibration time dramatically, from around 
12 hours to about 30 minutes, while preserving accuracy.

Conclusions
• The Hamiltonian and path integral formalism reliably and 

accurately reproduces option prices and implied volatility 
curves.

• Compared to Monte Carlo, the propagator method requires 
more time but uses memory and computational resources 
more efficiently, making it a preferable framework in many 
settings.

• The longer runtime can be mitigated by using memory-
oriented programming languages, allowing the propagator 
method to generate denser and more informative datasets.

• By combining propagator-generated data with a neural 
network push-forward, market calibration can be 
performed in practical time frames, enabling real-world 
financial applications.
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• Perform calibration with market 
data, estimating parameters 
through grid search and 
optimization, through Neural 
Networks, with the objective of 
minimizing RMSE and WRMSE 
between model and market 
implied volatilities3.

• Validate the framework using SPY ETF option data, covering 
multiple strikes and maturities, to assess its real-world 
applicability.
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