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Parametric Forward PINN solution predicts 
relic abundance value for a range of particle 
interaction values: mesh-free method

Requires a stable, non-baryonic, 
electrically neutral and cold particle 
to account for observed dark matter 
relic abundance 
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Physics-Informed Neural Networks (PINNs) Approach

Dark Matter Freeze-in dark matter Boltzmann equations 

Cross-section particle interactions

How to find particle dark matter models ?
How to determine the model parameters that explain the data ?

Forward PINNs Inverse PINNs

Projects: UIDB/00777/2020, UIDP/00777/2020, 
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Loss function is minimized 
during training

Residuals Initial condition

Results

Final condition: data DM relic density

Hubble parameter 
expansion of Universe 
in alternative cosmology

Comparison with finite element method  
shows that PINN accuracy is below 0.001 % at 
the end of training

Inverse PINNs find relation between particle 
interaction values and alternative cosmology 
exponents. FEM are not inherently designed 
for such inverse inference.

Given a physical theory, what testable predictions does it lead to ?
Given the experimentally observed data, what are the

physical theories that can explain this data ?

Gauss-Bonnet
Standard

Randall-Sundrum

Switch transition

Smooth transition

PINNs provide a valuable model-building 
theory tool useful in unraveling theories 
that can explain data.
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