

Unraveling particle dark matter with Physics-Informed Neural Networks

Authors: M.P. Bento (CFTP), H.B. Câmara, J.F. Seabra (CFTP)

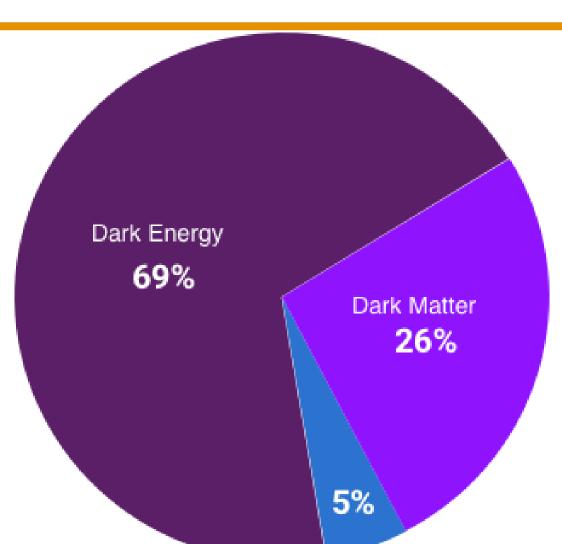
PhD in Physics Student @ CFTP FCT PhD Grant: 2021.06340.BD henrique.b.camara@tecnico.ulisboa.pt Supervisors: Filipe Joaquim (CFTP/IST)

Ricardo Felipe (CFTP, ISEL).

Publication: Phys. Lett. B 868 (2025) 139690

Projects: UIDB/00777/2020, UIDP/00777/2020, CERN/FIS-PAR/0019/2021, 2024.02004.CERN

Particle Dark Matter in Alternative Cosmologies



Dark Matter

Requires a **stable**, **non-baryonic**, electrically **neutral** and **cold particle** to account for observed dark matter relic abundance

$$\Omega_{\rm CDM} h^2 = 0.120 \pm 0.001$$

How to find particle dark matter models? How to determine the model parameters that explain the data?

Freeze-in dark matter Boltzmann equations

Cross-section particle interactions

$$\frac{dY(x)}{dx} = \frac{1}{x^2} \frac{S(m)}{H(m)} \langle \sigma v \rangle Y_{\text{eq}}(x)^2, \ Y(x_0 \ll 1) = Y_0 \ll 1$$

Hubble parameter

expansion of Universe

in alternative cosmology
$$H(x) \to H(x) \times F(x, x_t, \gamma) \,, \ F(x, x_t, \gamma) = \begin{cases} \left(\frac{x_t}{x}\right)^{\gamma} & \text{for } x < x_t \\ & \text{Switch transition} \end{cases}$$

$$\Omega h^2 = \frac{S_0}{\rho_{\text{crit}}^0/h^2} mY(x \to \infty)$$

$$\int_{\gamma}^{\gamma} \text{for } x < x$$

for $x > x_t$

Switch transition

Physics-Informed Neural Networks (PINNs) Approach

$$z \equiv \ln x$$

$$W(z) \equiv \ln Y(z)$$

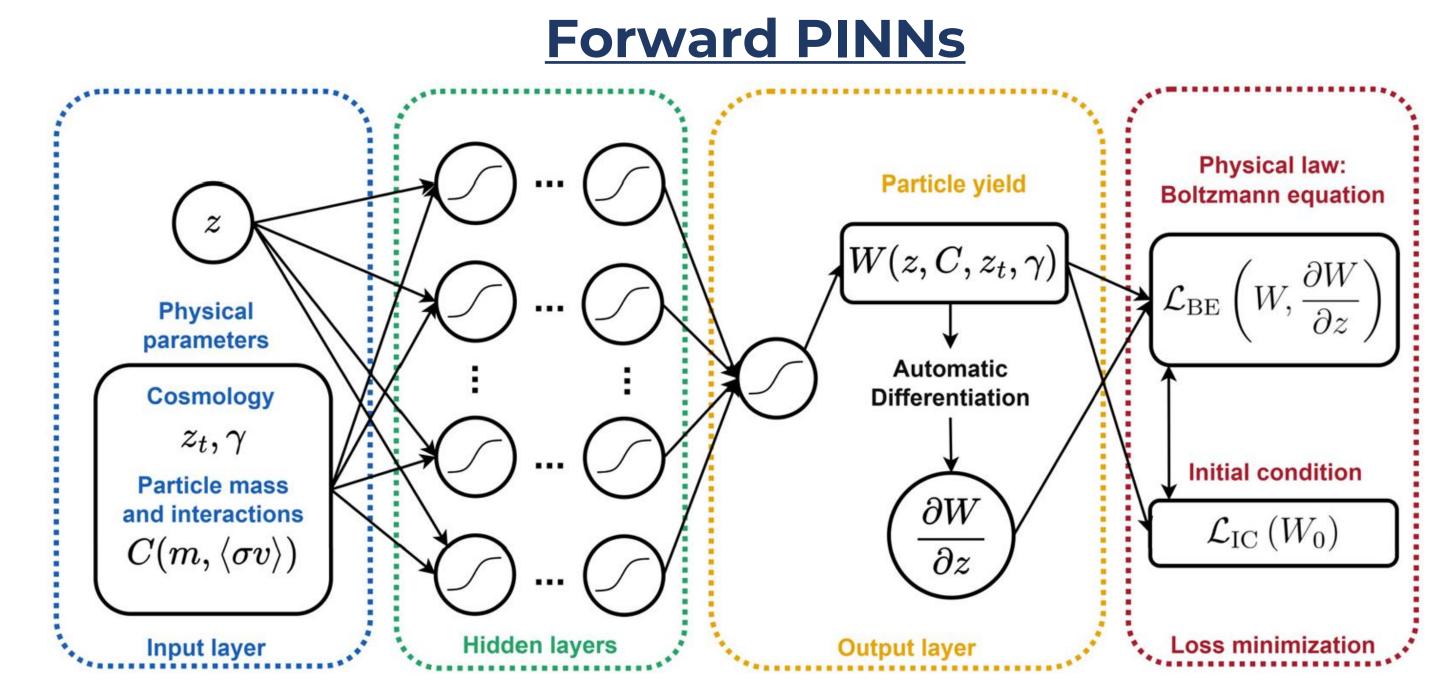
$$z \equiv \ln x$$

$$W(z) \equiv \ln Y(z)$$

$$\mathcal{E}\left[z, W, \frac{dW}{dz}; C, z_t, \gamma\right] \equiv \frac{dW}{dz} - \exp(C - \gamma \operatorname{ReLU}(z_t - z) - z + 2W_{\text{eq}} - W) = 0$$

$$\exp[C(m, \langle \sigma v \rangle)] \equiv \frac{\langle \sigma v \rangle S(m)}{H(m)}$$

$$F(z, z_t, \gamma) = \exp \left[\gamma \operatorname{ReLU}(z_t - z) \right]$$



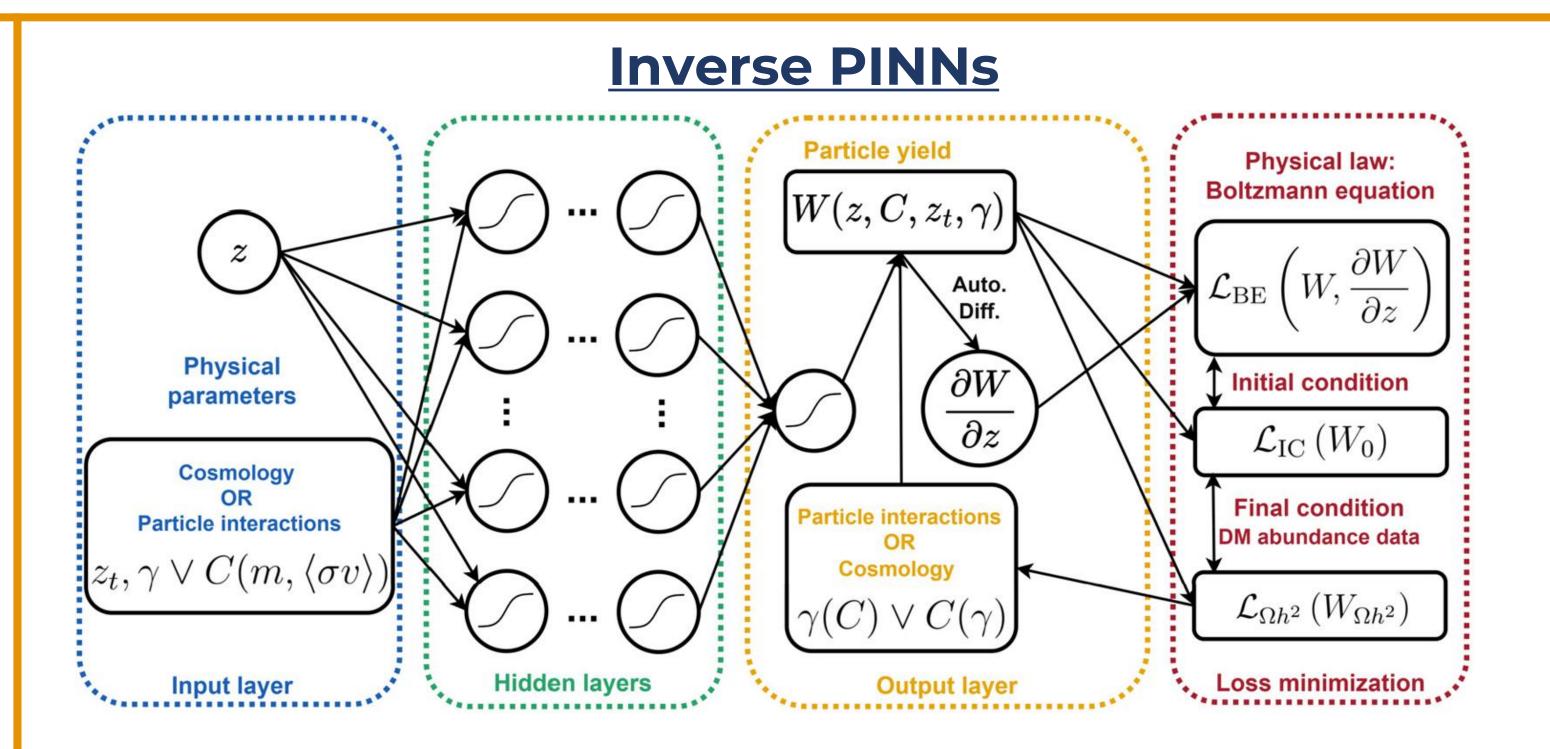
 $\mathcal{L}_{\text{Fwd}} = \lambda_{\text{BE}} \mathcal{L}_{\text{BE}} + \lambda_{\text{IC}} \mathcal{L}_{\text{IC}}$

Loss function is minimized during training

Initial condition

Residuals
$$\mathcal{L}_{\mathrm{BE}} = \frac{1}{N_z} \sum_{j=1}^{N_z} \left| \mathcal{E}\left[z_j, W(z_j), \frac{dW}{dz}(z_j); C, z_t, \gamma\right] \right| \qquad \mathcal{L}_{\mathrm{IC}} = |W(z_0) - W_0]|$$

Given a physical theory, what testable predictions does it lead to?



 $\mathcal{L}_{\text{Inv}} = \mathcal{L}_{\text{Fwd}} + \lambda_{\Omega h^2} \mathcal{L}_{\Omega h^2}$

Final condition: data DM relic density

$$\mathcal{L}_{\Omega h^2} = |W(z_f) - W_{\Omega h^2}|$$

Given the experimentally observed data, what are the physical theories that can explain this data?

Results

Residuals

PINNs provide a valuable model-building theory tool useful in unraveling theories that can explain data.

Standard Cosmology $\Omega h^2 = 0.12$ -0.6-0.9

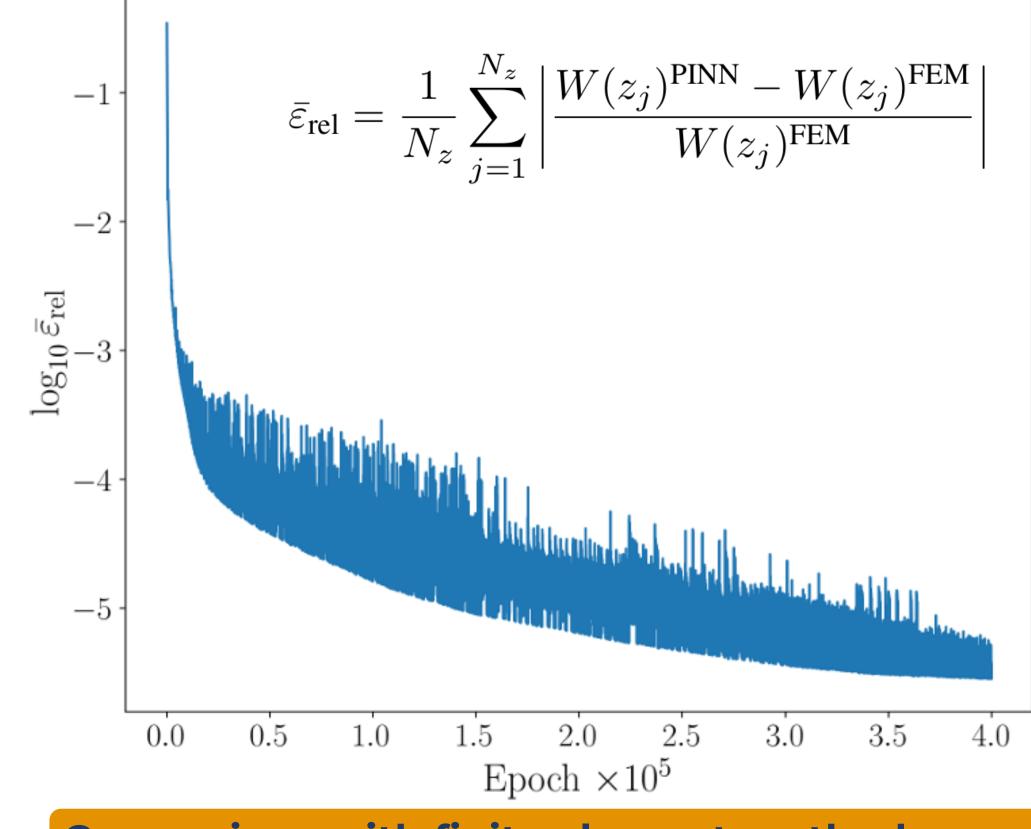
Parametric Forward PINN solution predicts

interaction values: mesh-free method

relic abundance value for a range of particle

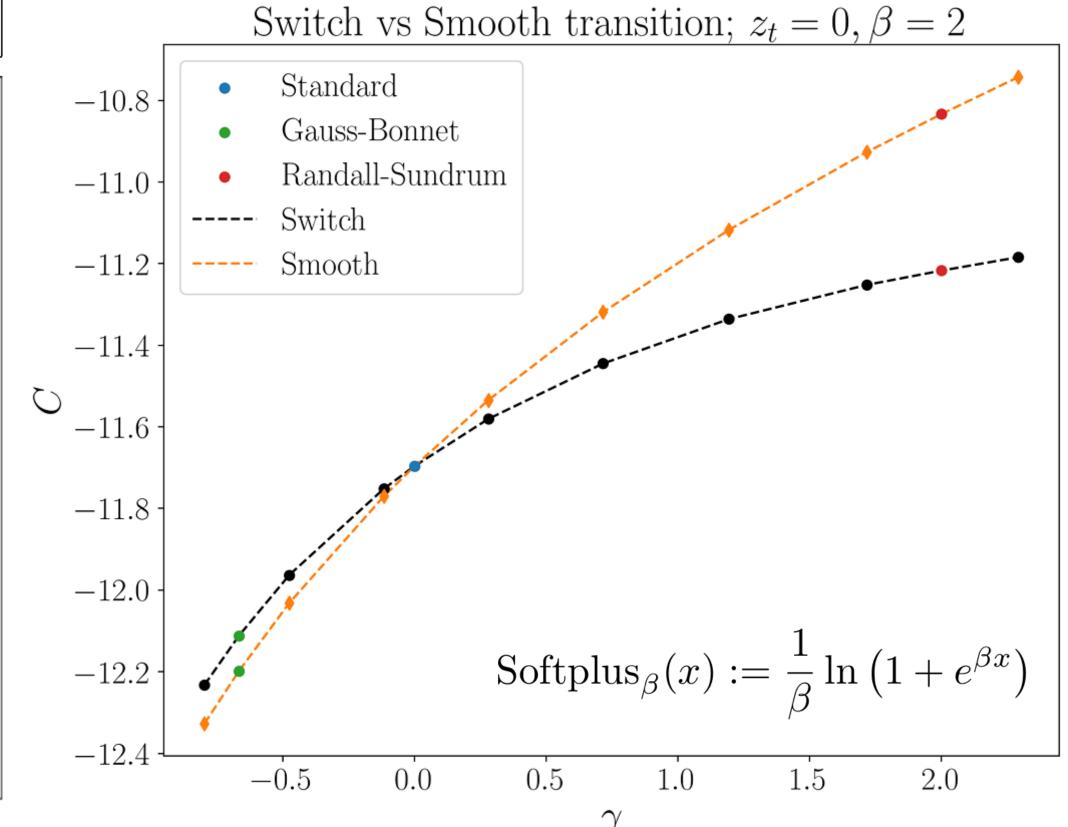
-10

 $\Omega h_{ ext{FEM}}^2$ $\langle \sigma v \rangle \; (\text{GeV}^{-2})$ $W(z_f)_{\mathsf{FEM}}$ C_{PINN} 3.9245×10^{-28} Gauss-Bonnet 0.1200-13.5806-26.1588 2.5825×10^{-27} Standard 0.1200-26.1585-11.6963 1.7225×10^{-25} Randall-Sundrum -26.15800.1201-7.4961



Comparison with finite element method shows that PINN accuracy is below 0.001 % at

Smooth transition $\frac{dW}{dz} - \exp(C - \gamma \operatorname{Softplus}_{\beta}(z_t - z) - z + 2W_{eq} - W) = 0$



Inverse PINNs find relation between particle interaction values and alternative cosmology exponents. FEM are not inherently designed for such inverse inference.

the end of training